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ABSTRACT
Personalized search improves the quality of search results by mod-
eling historical user behavior. In recent years, many methods based
on deep learning have greatly improved the performance of person-
alized search. However, most of the existing methods only focus
on modeling positive user behavior signals, which leads to incom-
plete user interest modeling. At the same time, the user’s search
behavior hides much explicit or implicit feedback information. For
example, clicking and staying for a certain period represents im-
plicit positive feedback, and skipping behavior represents implicit
negative feedback. Intuitively, this information can be utilized to
construct a more complete and accurate user profile. In this paper,
we propose a dual-feedback modeling framework, which integrates
multi-granular user feedback information to model the user’s cur-
rent search intention. Specifically, we propose a feedback extrac-
tion network to refine the dual-feedback representation in multiple
stages. For enhancing the user’s real-time search quality, we design
an additional dual-feedback feature gating module to capture the
user’s real-time feedback in the current session. We conducted a
large number of experiments on two real-world datasets, and the
experimental results show that our method can effectively improve
the performance of personalized search.
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1 INTRODUCTION
The search engine has provided great assistance for our daily in-
formation acquisition needs. With the rapid growth of information
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on the Internet in recent decades, excellent search engines have
played a more important role in alleviating information overload.
However, with the simultaneous increase in the number of users,
returning the same document list for the same query can no longer
meet users’ needs. The user’s query intention is often affected by
many factors, such as the user’s preferences and his short-term in-
teraction with the search results. Personalized search is considered
to be one of the promising ways to solve these problems [9, 23].
It carries out special modeling of user interests, which provides
personalized document rankings for different users.

In the past, traditional personalized search methods [3, 7, 24, 28–
30] focused on extracting different aspects of personalized signals
from query logs. Although most of their signals are manually de-
signed, these researches also show that personalization can effec-
tively improve the retrieval capabilities of search engines. In recent
years, with the research on deep learning becoming popular again,
many personalization methods [10, 17, 39, 41–45] based on deep
learning have significantly improved the search accuracy to a new
level.

Most of the existing works based on deep learning rely on the
user’s click history to model the user’s interest or eliminate the
ambiguity of the query [10, 17, 42]. However, click behavior is only
a small part of the entire search interaction, and only using this
information will lead to positive biased user profile. For example,
in a query that the user has never issued, each candidate document
matches the user’s positive interest to the same degree. In this case,
a method that only relies on positive interest modeling may make
a blind ranking decision. Therefore, it is not enough to only rely
on click behavior history to model the user’s search intention.

Fortunately, in addition to the click behavior, there are many
other interactive behaviors in the search log that can provide feed-
back. Behaviors such as skip and quick close contain a lot of in-
formation [15] that can help estimate user preferences, and can be
utilized to create a more complete and accurate user profile. How-
ever, studies have shown that user behavior is often related to the
origin display order of documents, which cause implicit feedback to
contain a lot of noise [15]. For example, when the first item in the
document list can meet all the user’s needs, even if the following
documents also meet the user’s needs, the user may not click on
the following documents after reading the first document. There-
fore, these implicit feedback cannot be utilized directly, and it is
important to design suitable module structures to capture different
types of feedback.

Furthermore, previous researches have shown that long-term
history and short-term history have different impact properties [3,
16, 32]. The search history in the current session (short-term his-
tory) can reflect the current query intention and information that
the user has already obtained. For example, when the user has
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searched for “The Matrix I” and “The Matrix II: Reloaded”, if the
user searches for “The Matrix’s Sequel” at this time, it is probably
that the user’s real search intention is “The Matrix III: Revolutions”.
Therefore, in order to utilize short-term feedback, it is necessary to
perform sequential and fine-grained modeling of user interaction
behaviors.

In this paper, we propose a Personalized Search model with
Dual-Feedback Network (PSDFN). This model extracts different
levels of dual-feedback from the query history to construct a more
comprehensive search intention. It consists of two sub-modules: a
long-term historical dual-feedback extraction module and a real-
time dual-feedback extraction module. The former module digs
out feedback signals from users’ long-term search logs, and then
converts these signals into dual-feedback representation in multiple
stages. The latter focuses on the details of the search interaction of
the current session, trying to capture fine-grained topic information
and sequence relationships from short-term history. Finally, with
the mutual complementary information of the two sub-modules,
we can obtain the dual intention representation of the current
query, and utilize this representation to calculate the relevance of
candidate documents to personalize the search results.

The main contributions of this paper are summarized as follows:
(1) We propose a feedback modeling framework, which mod-

els users’ positive/negative behavior and uses dual-feedback to
improve the performance of personalized search.

(2) We design a hierarchical feedback extraction model, which
can extract feedback information from levels such as query level
and long-term historical level.

(3) We specially design the feedback feature gating module for
real-time feedback, which can capture more fine-grained sequential
information and assist the model to obtain more accurate user
intentions.

2 RELATEDWORK
2.1 Personalized Search
Personalized search improves the search quality of search engines
by virtue of its characteristics that can meet the personalized needs
of different users [4]. An important way to achieve personalization
is to dig out available information from the user’s search history
and behaviors, and then to model user preferences. Traditional re-
search methods mostly use the method of extracting features from
click data and document topics. This kind of method was widely
studied at that time because of its high efficiency and stability. Dou
et al. [9] proposed P-click and G-Click. These two methods are
used to personalize the ranking of candidate documents accord-
ing to individual-level and group-level click behaviors. In addition,
there are some researchers who tried to focus on the topic features
of the document. The Open Directory project (ODP) provides a
large amount of classified web information, which can be used
as an explicit topic feature of the document [2, 22, 33]. However,
manual editing has brought huge labor costs and incompleteness
of document categories. Research based on the latent topic space
alleviates these problems to a certain extent [5, 13, 27, 28]. These
methods [3, 26] are dedicated to learning implicit vector represen-
tations and using learning to rank methods to train models.

In recent years, deep learning has provided powerful representa-
tion learning capabilities for personalized search, which has been
leveraged by researchers to improve the capabilities of models in
many aspects. Some researches [10, 18] are devoted to modeling
the potential interests of users, which leads to better user profiles
and more precise personalization. However, the previous meth-
ods didn’t explore the user’s negative feedback, which makes the
constructed user interest incomplete. Rather than just focusing on
positive feedback, our framework focuses on integrating multiple
user feedbacks to obtain comprehensive user interests.

2.2 Modelling Negative Feedback for
Information Retrieval

Negative feedback is a special kind of feedback signal, which can
solve some problems that positive feedback can’t solve due to dif-
ferent concerns about information. In the field of information re-
trieval, some frameworks are used to capture negative feedback
signals. Wang et al. [31] modeled the unclicked documents under
difficult queries, so that the unshown documents are re-ranked
based on negative feedback. Hao et al. [12] proposed a method to
automatically identify the type of document feedback, and used
the Expectation-maximization algorithm to estimate the positive
feedback and negative feedback based on the document type. Zhang
and Wang [40] classified the preliminary screening documents ac-
cording to their relevance, and then conducted a second retrieval
based on the feedback. Recently, some frameworks have tried to
apply negative feedback to recommendation systems. Xie et al. [36]
used explicit positive and negative feedback to extract implicit feed-
back signals. Wu et al. [35] established a unified framework that
jointly considered the user’s behavior sequence and the influence
of multiple feedback signals. In this paper, we attempt to jointly
utilize the positive and negative feedback in the search process to
improve the user’s query intention representation.

3 PSDFN: OUR PROPOSED MODEL
Personalized search has shown great potential in improving the
quality of search results. As we stated in Section 1, personalized
search uses the user’s past search history to understand the query
intention more accurately. Many queries have multiple intents in
the text itself, one of which will be the user’s true search intention,
which we call "positive intention". Correspondingly, the other in-
tents of the query are called "negative intention". However, most
of the existing personalized search models only use the click be-
havior to construct the user’s positive preference, and less consider
how to extract additional information from the user’s negative
behaviors. These shortcomings make these methods weak in the
construction of the user’s complete profile. In this paper, we sug-
gest learning different types of search intention representations
of users under specific queries to model users’ complete search
preferences. Specifically, we propose a hierarchical dual-feedback
extraction model, which extracts dual feedback from long-term his-
tory and short-term history in multiple stages, thereby enhancing
the comprehensiveness of current query understanding.

To start with, the problem can be formulated as follows. Suppose
that for a user 𝑈 , his historical search data is 𝐻𝑢 = {𝑆1, 𝑆2, ..., 𝑆𝑁 },
where each element represents a separate session and 𝑆𝑁 represents



the current session. Each session contains a list of chronological
queries and each query has its corresponding candidate document
list, denoted as 𝑆𝑘 = {{𝑞1

𝑘
, 𝑑1

𝑘,1, 𝑑
1
𝑘,2}, ..., {𝑞

𝑛𝑘

𝑘
, 𝑑𝑛

𝑘

𝑘,1, ...}} and 𝑛𝑘 is
the number of queries in the session 𝑆𝑘 . Given a new query at this
time and candidate documents 𝐷 = {𝑑1, 𝑑2, ...} are returned by the
search engine. Our task is to compute the relevance score of each
candidate document based on the "query-document" relevance and
the user’s preference. The final probability that the document 𝑑
will be clicked by user𝑈 is denoted as 𝑝 (𝑑 |𝑞,𝑈 ):

𝑝 (𝑑 |𝑞,𝑈 ) = 𝜙
(
𝑝 (𝑑, 𝑞), 𝑝 (𝑑 |𝑞,𝑈 +), 𝑝 (𝑑 |𝑞,𝑈 −)

)
,

where 𝑝 (𝑑 |𝑞,𝑈 ) consists of three parts: the first part represents the
origin semantic relevance between the query and the candidate
document. The second part represents the relevance between the
user’s positive intention and the candidate document. The third part
represents the relevance between the user’s negative intention and
the candidate document. Meanwhile, 𝜙 represents an MLP (Multi-
Layer Perceptron) with 𝑅𝑒𝐿𝑈 and 𝑡𝑎𝑛ℎ as the activation function,
which is used to fuse these features to obtain the final predicting
result. The whole architecture of our model is illustrated in Figure 1.
Next, we will introduce the details of the three parts: (1) Long-term
history dual-feedback (2) Real-time dual-feedback (3) Re-ranking.

3.1 Long-term History Dual-Feedback
As we stated in Section 1, previous researches mostly focus on the
building of the user’s positive behaviors, while neglecting other
explicit or implicit negative feedback. In order to capture a more
complete user search intention, we designed a multi-type feedback
extraction model. The model simulates the user’s past decision-
making state, which assists in extracting the user’s real positive
intentions and negative intentions at the time. Specifically, we
divide the process into four parts: (1) Query/Document Encoding
(2) Sequence Interaction (3) Hierarchical Dual-Feedback Extraction
(4) Intention Prediction.

3.1.1 Query/Document Encoding. For understanding the semantic
information of queries and documents, we can explore two aspects:
context and user behavior. Firstly, for each document, we calculate
three parts of its embedding. The first part is word embedding,
we obtain the pre-trained word vector from word2vec, and then
dynamically update the word vector during training. The second
part is position embedding, which is used to capture the sequential
logic of contextual semantics. The third part is type embedding,
which is designed to distinguish the behavior on different docu-
ments. Documents that are clicked and stayed for more than 30
seconds are regarded as satisfactory types. We take the last satisfac-
tory document in the list of displayed documents as the pivot, the
unclicked document above it is regarded as the skip type, and the
unclicked document below it is regarded as the ignored type. Then,
we map all document types to the same dimension as the document
representation, thereby obtaining the type embedding. Thus, for
each document 𝐷 = {𝑤1,𝑤2, ...,𝑤𝑚}, the encoding process of each
document can be denoted as:

𝐸𝐷 = 𝐴𝑣𝑔(Trm(𝐸𝑤
𝐷
+ 𝐸𝑃𝐷 )) + 𝐸𝑡𝐷 , (1)

where 𝐸𝑤
𝐷

∈ R𝑚∗𝑑 is word embedding for document 𝐷 , 𝐸𝑝
𝐷

∈ R𝑚∗𝑑

is its position embedding and 𝐸𝑡
𝐷

∈ R𝑑 is type embedding. And
Trm(·) is a Transformer encoder layer [25], which is to integrate
the information from word embedding and position embedding.
𝐴𝑣𝑔(·) is an average function, which calculates the average rep-
resentation of a series of vectors and regards it as the semantic
presentation of this document. Next, we add the type embedding
to the semantic representation, which generates the final presen-
tation of the document. The query encoding process is similar to
the above process, but eliminates the type embedding to maintain
the independence of query. Finally, we add the query encoding
to its candidate documents’ encoding, which aims to model the
search intention represented by documents under a specific query.
So far, we obtain unified encoding of queries and documents for
later extraction of user feedback information.

3.1.2 Sequence Interaction. As we have stated in section 1, the
interactive behaviors in historical user data contains more com-
prehensive preference information. The process of a user using a
search engine is often an interaction in the unit of "Query-Displayed
document list". The interaction process between the user and dis-
played documents is very complicated, especially for unclicked
documents that are full of noise. For example, if a user clicks on
the first document but skips the second document, there are two
possibilities: (1) One is simply that the second document does not
meet the user’s needs (2) The other one is that the first document
is similar to the second document, and the user has already ob-
tained the required information from the first document, so give
up browsing the second document. Therefore, we need to model
the real positive and negative preferences of users in the unit of
"Query-Displayed document list".

Formally, for each query 𝑞𝑖 in history, it has a candidate docu-
ment list𝐷𝑖 = {𝐷𝑖,1, 𝐷𝑖,2, ..., 𝐷𝑖,𝑚}. We take the final representation
of documents in section 3.1.1, denoted as 𝐼𝑖 = {𝐼𝑖,1, 𝐼𝑖,2, ..., 𝐼𝑖,𝑚}. For
capturing potential information from different types of documents
in the displayed list, we design a heterogeneous transformer to
further eliminate the noise of presentation:

𝐼𝑤𝑖 = Trmℎ (𝐼𝑖 + 𝐼𝑃𝑖 ), (2)

where Trmℎ is a heterogeneous transformer and 𝐼𝑝
𝑖
is position em-

bedding for perceiving the order relation among different feedback.

3.1.3 Dual-Feedback Extraction. Next, we need to extract accurate
feedback from these refined behaviors. First, we use the click action
in the behavior sequence as positive feedback. Specifically, we take
the average vector of clicked documents as the positive intention
representation 𝐹

𝑝′

𝑖
for the i-th query. At the same time, the user’s

search intention is not only related to the query itself, but also
closely related to the search process within the session. Therefore,
we construct a session-level RNN, which calculates a series of re-
vised positive intention representation based on historical search
intention within the session. Formally, for the n-th query of the
m-th session, the revised positive intention 𝐹𝑝𝑚,𝑛 can be represented
as:

𝐹
𝑝
𝑚,𝑛 = RNNCell(ℎ𝑚,𝑛−1, 𝐹

𝑝′
𝑚,𝑛), (3)
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Figure 1: The architecture of our model PSDFN. Historical queries and document information are encoded in vector form, and
then sequence interaction and dual-feedback extraction are performed in the query unit. Next, we generate historical-level
feedback from the long-term dual-feedback based on the current query, and capture fine-grained topic information in the
short-term feedback. Finally, the long-term and short-term feedback are fused and matched with the candidate documents,
and the final personalized score is calculated with the assistance of additional features.

where ℎ𝑚,𝑛−1 is the latent vector at the previous point in time and
ℎ𝑚,0 is implemented as zero vector. The subscripts of 𝐹𝑝

′
𝑚,𝑛 and 𝐹

𝑝′

𝑖
have a one-to-one correspondence according to the search time.
RNNCell(·) can be vanilla RNN, LSTM [14], GRU [6] or other RNN
variants [11]. For better blancing operating efficency and training
time, we implement it as GRU in our model:

𝑟𝑚,𝑛 = 𝜎 (𝑊𝑟 · 𝐹𝑝
′

𝑚,𝑛 +𝑉𝑟 · ℎ𝑚,𝑛−1 + 𝑏𝑟 ),

𝑧𝑚,𝑛 = 𝜎 (𝑊𝑧 · 𝐹𝑝
′

𝑚,𝑛 +𝑉𝑧 · ℎ𝑚,𝑛−1 + 𝑏𝑧),

𝑐𝑚,𝑛 = tanh(𝑊𝑐 · 𝐹𝑝
′

𝑚,𝑛 + 𝑟𝑚,𝑛 ⊙ (𝑉𝑐 · ℎ𝑚,𝑛−1 + 𝑏𝑐𝑣) + 𝑏𝑐 ),
ℎ𝑚,𝑛 = (1 − 𝑧𝑚,𝑛) ⊙ ℎ𝑚,𝑛−1 + 𝑧𝑚,𝑛 ⊙ 𝑐𝑚,𝑛,

(4)

where reset gate 𝑟𝑚,𝑛 and update gate 𝑧𝑚,𝑛 control information from
previous states and current state, 𝜎 represents the sigmoid function,
𝑊𝑟 ,𝑉𝑟 ,𝑊𝑧 ,𝑉𝑧 ,𝑊𝑐 ,𝑉𝑐 , 𝑏𝑐𝑣, 𝑏𝑐 are learnable and shared parameters
updated with the training process. We take the hidden state output
at each time point as the revised positive intention 𝐹

𝑝
𝑚,𝑛 , and then

convert it to 𝐹
𝑝

𝑖
corresponding to the i-th query through the one-

to-one mapping relationship of the sequence.
Compared with clearer positive intentions, the negative inten-

tions of users are more sparsely distributed. In other words, under
a certain query, in addition to the user’s real positive intention,
the other intentions are all negative intentions of varying degrees.
Therefore, our purpose is not to construct a negative user profile,
but to construct the feedback that is most dissimilar to the user’s

search intention under a certain query as an "anchor". Inspired
by self-supervised learning, we regard that the unknown negative
intentions of the user can be obtained from the known positive
intention. Thus, we design a negative signals extraction module
to capture the negative feedback. Formally, for the non-positive
feedback behavior subsequence {𝐼𝑖,i1, 𝐼𝑖,i2, ..., 𝐼𝑖,im} of the i-th query:

𝛼 ′
𝑖,𝑘

= 1 −
exp(𝐼𝑖,𝑘 · 𝐹𝑝

𝑖
)∑im

𝑗=1 exp(𝐼𝑖, 𝑗 · 𝐹
𝑝

𝑖
)
,

𝛼𝑖,𝑘 =
exp(𝛼 ′

𝑖,𝑘
)∑im

𝑗=1 exp(𝛼 ′
𝑖, 𝑗
)
,

𝐹𝑛
𝑙,𝑖

=

im∑
𝑘=1

𝛼𝑖,𝑘 𝐼𝑖,𝑘 ,

(5)

where 𝛼 ′
𝑖,𝑘

is the weight of the k-th negative term, and 𝛼𝑖,𝑘 is the
weight after applying softmax function to 𝑎𝑖,𝑘 . Finally, we obtain
the negative feedback of the i-th query.

3.1.4 Intention Prediction. After getting the dual-feedback under
each query in the long-term history, we use the feedback informa-
tion to predict the real intention of the user under the current query.
In order to capture different types of user intentions, we use two
homogenous transformers to predict the user’s real positive and
negative intentions under the current query. Formally, given the
historical feedback 𝐹𝑝

𝑙
= {𝐹𝑝

𝑙,1, 𝐹
𝑝

𝑙,2, ..., 𝐹
𝑃
𝑙,ℎ

}, 𝐹𝑛
𝑙
= {𝐹𝑛

𝑙,1, 𝐹
𝑛
𝑙,2, ..., 𝐹

𝑛
𝑙,ℎ

},
the process can be formulated as follows:



𝑞
𝑝

𝑙
= Trm𝑙 ( [𝐹𝑝

𝑙
, 𝑞𝑐 ]),

𝑞𝑛
𝑙
= Trm𝑙 ( [𝐹𝑛

𝑙
, 𝑞𝑐 ]),

(6)

where 𝑞𝑐 means the current query encoding output in section 3.1.1,
Trm𝑙 represents taking the output in the last position after trans-
former encoding.

3.2 Real-time Dual-Feedback
The long-term module proposed above can perceive the positive
feedback and negative feedback of similar queries in the past, but
does not pay attention to the interactive feedback between the user
and search results in the current session. Just like "the Matrix" ex-
ample we gave in section 1, the interactive information contained
in the current session sometimes dominates the user’s search inten-
tion more than the long-term history. Therefore, we aim to establish
a fine-grained and short-term feedback dominant model to increase
focus on recent interactions.

Given the short-term search interaction history in the current
session, we intent to capture the sequential features of changes in
content requirements. Firstly, with the assistance of Dual-Feedback
extraction module stated in section 3.1, we obtain the positive
feedback 𝐹

𝑝
𝑠 = {𝐹𝑝

𝑠,1, 𝐹
𝑝

𝑠,2, ..., 𝐹
𝑝
𝑠,sn} and negative feedback 𝐹𝑛𝑠 =

{𝐹𝑛
𝑠,1, 𝐹

𝑛
𝑠,2, ..., 𝐹

𝑛
𝑠,sn} in the current session. Then, we take the positive

and negative intentions obtained by the long-term module as the
user’s long-term preferences, and apply feature extraction operation
to the short-term feedback information. The feature extraction
operation can be formulated as:

𝐹
𝑝𝑓
𝑠 = 𝐹

𝑝
𝑠 ⊗ (𝐹𝑝𝑠 𝑊

𝑝

1 + 𝑞𝑝
𝑙
𝑊

𝑝

2 + 𝑏𝑝 ),

𝐹
𝑛𝑓
𝑠 = 𝐹𝑛𝑠 ⊗ (𝐹𝑛𝑠𝑊 𝑛

1 + 𝑞𝑛
𝑙
𝑊 𝑛

2 + 𝑏𝑛),
(7)

where 𝐹𝑝𝑠 , 𝐹𝑛𝑠 ∈ Rsn∗𝑑 are short-term feedback, ⊗ represents element-
wise vector multiplication,𝑊 𝑝

1 ,𝑊
𝑝

2 ,𝑊 𝑛
1 ,𝑊

𝑛
2 ∈ R𝑑∗𝑑 are learnable

parameters and 𝑏𝑝 , 𝑏𝑛 ∈ R𝑑 are learnable bias vectors.
Now that we have extracted fine-grained features from the feed-

back information to enhance the representation of short-term in-
teractive information, we then try to use short-term feedback to
predict the real intention of the current query.

𝑞
𝑝
𝑠 = Trm𝑙 ( [𝐹𝑝𝑓𝑠 , 𝑞𝑐 ]).

𝑞𝑛𝑠 = Trm𝑙 ( [𝐹𝑛𝑓𝑠 , 𝑞𝑐 ]).
(8)

At this point, we have obtained the query intention after a short-
term enhancement of dual-feedback. Next, we will use long-term
and short-term enhanced query intention to re-rank the list of
candidate documents.

3.3 Re-ranking
Finally, we can calculate the final score of each candidate document
through the multiple user query intention representation obtained
above. For the matching of candidate documents, we follow HTPS
model proposed by [42] to calculate the context-aware representa-
tion of the document, denoted as 𝑑𝑤 . Next, we will introduce the
calculation methods of each part.

For personalized matching relevance, we collected long-term and
short-term dual-feedback enhanced query expressions, including:
(1) long-term positive intention enhanced query 𝑞𝑝

𝑙
(2) short-term

positive intention enhanced query 𝑞𝑝𝑠 (3) long-term negative inten-
tion enhanced query 𝑞𝑛

𝑙
(4) short-term negative intention enhanced

query 𝑞𝑛𝑠 . We have:

𝑝 (𝑑 |𝑞,𝑈 +) = 𝜙 (Sim(𝑞𝑝
𝑙
, 𝑑𝑤), Sim(𝑞𝑝𝑠 , 𝑑𝑤)),

𝑝 (𝑑 |𝑞,𝑈 −) = 𝜙 (Sim(𝑞𝑛
𝑙
, 𝑑𝑤), Sim(𝑞𝑛𝑠 , 𝑑𝑤)),

where Sim is the similarity between the refined query vector and
document vector, which is implemented as cosine similarity in our
experiments.

For ad-hoc matching relevance, we divide it into three parts to
calculate: In the first part, we follow [42] and extract some clicks
and topic features F in candidate documents. In the second part,
we consider the matching relationship between the original query
and the document. In the third part, we follow the K-NRM model
proposed by [37], which applies k kernels to capture matching
information of different ranges:

𝑝 (𝑑 |𝑞) = 𝜙

(
𝜙 (F ), Sim(𝑞𝑐 , 𝑑𝑤), Sim𝐼 (𝑞, 𝑑)

)
,

where Sim𝐼 (𝑞, 𝑑) represents calculating matching relevance based
on interactive methods K-NRM. Finally, we calculate the score of
each candidate document, and re-rank the list of candidate docu-
ments according to the score.

In the training and optimization part, we chose the neural rank-
ing algorithm LambdaRank to train the entire model, which is based
on the pairwise method. Given two documents 𝑑𝑜𝑐𝑖 and 𝑑𝑜𝑐 𝑗 , the
probability that 𝑑𝑜𝑐𝑖 is more relevant than 𝑑𝑜𝑐 𝑗 can be computed
as follows:

𝑃𝑖 𝑗 =
1

1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗 )
,

where 𝜎 is learnable parameter, 𝑠𝑖 and 𝑠 𝑗 are relevance scores of
𝑑𝑜𝑐𝑖 and 𝑑𝑜𝑐 𝑗 respectively. Next, we compute the real probability
𝑃𝑖 𝑗 of each document:

𝑃𝑖 𝑗 =
1
2 (1 + 𝑆𝑖 𝑗 ),

where 𝑆𝑖 𝑗 is the real label of this pair of documents. If 𝑑𝑜𝑐𝑖 is more
relevant than 𝑑𝑜𝑐 𝑗 then 𝑆𝑖 𝑗 = +1, if the correlation between 𝑑𝑜𝑐𝑖
and 𝑑𝑜𝑐 𝑗 is equal then 𝑆𝑖 𝑗 = 0, otherwise 𝑆𝑖 𝑗 = −1. Finally, we use
cross entropy to define the loss function:

L = −𝑃𝑖 𝑗 log 𝑃𝑖 𝑗 −
(
1 − 𝑃𝑖 𝑗

)
log

(
1 − 𝑃𝑖 𝑗

)
.

4 EXPERIMENTAL SETUP
4.1 Dataset
We conducted experiments on the AOL search log dataset [19]
and a commercial search log from a real search engine (written as
"Commercial dataset" in the following). The detailed statistics of
the datasets are shown in Table 1:

AOL Dataset is a dataset that contains a large amount of real
user search history. It includes three months of query and click data
from March 1, 2006 to May 31, 2006. Since there is only user click



Table 1: Basic statistics of the datasets.

Dataset AOL Commercial
# Days 91 58
# Users 110,439 33,204
# Queries 736,454 267,479
# Sessions 279,930 97,858
Average query length 2.87 3.25
Average #click per query 1.11 1.19

data in the original data, we follow [1] to use the BM25 algorithm
to recall the top candidate documents. We also split logs into ses-
sions, keeping the data preprocessing consistent with the previous
work [42]. In order to make all the samples have sufficient user
history, we divided the dataset by time. Specifically, we use the data
of the first five weeks as user history, and the data of the next eight
weeks as experimental data. Then, we divide the experimental data
into the training set, validation set and test set at a ratio of 6:1:1.

Commercial Dataset contains two-month-long search logs
from 2013. The commercial search engine did not use personal-
ization technology at the time, so it has the potential to improve
search quality through personalization. We use the search records
of the first six weeks as historical data, and the last two weeks as
experimental data. We follow [34] and regard 30 minutes of inac-
tivity as a signal to divide the session. Since this dataset contains
dwell time, we consider the click that stays for 30 seconds or the
last click in the session as a satisfactory click.

4.2 Baselines
In order to better understand the performance of our model, we
select some baselines for comparison. In terms of baseline types,
we choose some ad-hoc models and previous personalized search
methods:

Ori. [21] For the AOL dataset, since the original dataset only
provides click data.We followed [1] to reconstruct the search results
based on BM25 algorithm. For the commercial dataset, we directly
use the original data because the initial displayed document list
information has been given.

KNRM [37] It is a kernel-based neural ranking model that uses
kernels to obtain soft-TF signals. The interactive matching features
between query and document are extracted for ranking.

Conv-KNRM [8] It is the improved version of KNRM. Conv-
KNRM adds n-gram convolution and model levels on the original
basis, which allows it to capture more subtle semantic entities.

BERT [20] This model transforms from the pre-trained BERT
model, which allows itself to predict the similarity score between
the query and the document. The parameters of the entire model
will be dynamically updated during the training.

HRNN [10] This model designs a hierarchical RNN and attention
structure, which is to capture user interest in the long-term and
short-term search history. Dynamically updated user interests help
search engines to achieve personalization.

PSGAN [17]This model introduces the generative adversarial
network into personalized search. The generator continuously
learns to generate higher-quality negative examples during train-
ing, and the discriminator continuously strengthens to distinguish

the subtle differences between the satisfying click document and
other documents. Finally, this model uses the trained discriminator
to re-rank candidate documents.

HTPS [42] This model uses transformer to disambiguate the
current query in conjunction with contextual semantics. Mean-
while, in order to capture the user’s query habit, it also designs
a personalized language model to better predict the user’s query
intention.

PEPS [38] This model trains a personalized word embedding for
each user, and improves the overall search quality through better
data representation.

PSDFN (Personalized Search with Dual- Feedback Network)
This is the whole model proposed in Section 3

4.3 Evaluation Metrics
For evaluating the performance of the model, we select three eval-
uation metrics: mean average precise (MAP), mean reciprocal rank
(MRR) and precision@1 (P@1). Although the above evaluation met-
rics are widely recognized, in some cases they are still flawed in
some ways. For example, although some documents are relevant,
they are still ignored due to the original low ranking position [15],
which causes such documents to be marked as irrelevant. We con-
sider using P-improve [17] as the fourth evaluation indicator, which
can better evaluate the preference for reliability correlation. It is
a remarkable fact that since the unclicked documents in the AOL
dataset were subsequently recalled through BM25, it is not suitable
to apply P-improve on the AOL dataset. Therefore, we only use the
P-improve for evaluation on the commercial dataset.

5 RESULTS AND ANALYSIS
5.1 Overall Performance Comparison
The performance results of different models on the two datasets
are shown in Table 2. It can be observed that:

(1) Ourmethod vs. baselines of personalized search.Ourmethod
outperforms all previous personalization models on both
datasets. Compared with the best baseline model PEPS and HTPS,
our model has a significant improvement in all evaluation met-
rics with paired t-test at p <0.05 level. Specifically, compared to
the best baseline PEPS on the AOL dataset, we have increased
the MAP by 1.15%, and outperforms HTPS by 0.6% on the com-
mercial dataset. The significant performance improvement on the
two datasets shows that extracting dual-feedback information can
improve the search quality.

(2) Personalized search vs. Ad-hoc search. Experimental results
show that the personalized search model based on deep learning is
better than all Ad-hoc search baseline models. The Ad-hoc search
model ranks the candidate documents according to the relevance
of the query and the document, while the personalized search also
considers the user’s preferences. The performance advantage of
personalized search shows that the retrieval model of one-size-
fits-all is difficult to meet the retrieval needs of different users. In
addition, we observe that personalized search models make the
most significant progress on P@1, which may be because the user’s
re-finding behavior is appropriately modeled.



Table 2: The results of all models on two datasets. The percentage is based on the SOTA baseline. ‘†’ indicates the model
outperforms all baselines significantly with paired t-test at p < 0.05 level. Best results are denoted in bold.

Model AOL dataset Commercial dataset
MAP MRR P@1 MAP MRR P@1 P-improve

Ad-hoc search baselines
Ori. .2504 -64.9% .2596 -64.2% .1534 -75.6% .7399 -10.2% .7506 -10.0% .6162 -15.6% - -
KNRM .4291 -39.8% .4391 -39.5% .2704 -56.9% .4916 -40.3% .5001 -40.1% .2849 -61.0% .0655 -75.3%
Conv-KNRM .4738 -33.5% .4849 -33.2% .3266 -48.6% .5872 -28.7% .5977 -28.4% .4188 -42.7% .1422 -46.5%
BERT .5033 -29.4% .5135 -29.3% .3552 -43.4% .6232 -24.4% .6326 -24.2% .4475 -38.7% .1778 -33.1%
Personalized search baselines
HRNN .5423 -23.9% .5545 -23.6% .4854 -22.7% .8065 -2.1% .8191 -1.8% .7127 -2.4% .2404 -9.5%
PSGAN .5480 -23.1% .5601 -22.8% .4892 -22.1% .8135 -1.3% .8234 -1.3% .7174 -1.8% .2489 -6.3%
HTPS .7091 -0.5% .7251 -0.1% .6268 -0.1% .8224 - .8324 - .7286 - .2552 -
PEPS .7127 - .7258 - .6279 - .8221 -0.1% .8321 -0.1% .7251 -0.4% .2545 -0.3%
Our method
PSDFN .7242† +1.6% .7358† +1.4% .6403† +2.0% .8273† +0.6% .8374† +0.6% .7326† +0.5% .2688† +5.3%

(3) Single feedback vs. Dual feedback. Both PSGAN and HRNN
regard the recurrent neural network as one of the important compo-
nents, but HRNN only considers the positive feedback information
of clicks, while PSGAN utilizes negative behavior feedback on
this basis. Similarly, both HTPS and PSDFN adopt the transformer
module, but PSDFN emphasizes the role of negative behavior feed-
back. The results show that the models that take the negative
feedback into account in the two comparison groups achieve
better performance improvement.

In summary, the experimental results prove that personalized
search with dual feedback network is conducive to accurately
capturing the current search intention and enhancing the person-
alization of search results. To analyze the model in more detail,
we conducted the following supplementary experiment: ablation
studies, effect of long-term and real-time feedback, performance of
different query sets.

5.2 Ablation Analysis
To prove the effectiveness of the modules in our method, we con-
ducted ablation studies on some important components in the
model. The experimental settings on AOL dataset are as follows:

PSDFNw/o. SI.We remove the Sequence Interaction component
in the long-term module.

PSDFN w/o. PFIS.We disgard the positive feedback interaction
within each session in the long-term history dual-feedback module.

PSDFN w/o. NF. We remove the negative feedback and only
keep the positive feedback.

The results of ablation experiments are shown in Table 3. First
of all, the performance of all ablation experiments is not as good as
the overall model, which proves that each component in the model
makes a positive contribution. Specifically, among the three exper-
imental settings, the performance degradation of the experiment
without negative feedback is the most obvious. This strongly proves
that the combination of negative feedback and positive feedback
can effectively improve search quality. In addition, the PFIS compo-
nent also improves performance to a certain extent, indicating that
this component captures the potential relevance of feedback within

Table 3: Performance of ablation studies on different mod-
ules of our model (on AOL dataset)

Model MAP MRR P@1
w/o. SI .7179 -0.9% .7299 -0.9% .6321 -1.3%
w/o. PFIS. .7121 -1.7% .7245 -1.6% .6267 -2.2%
w/o. NF. .7047 -2.8% .7172 -2.6% .6181 -3.6%
PSDFN .7242 - .7358 - .6403 -

the session. The Sequence Interaction component also plays a role
in improving performance, which is consistent with the conclusion
of the previous study. That is, the user’s click decision is related to
the order in which the list documents are displayed.

5.3 Long-term and Real-time Feedback
In the ablation study, we studied the influence of several main com-
ponents on the model. For exploring the different contributions of
long-term feedback and real-time feedback, we separately reserve
one of the two modules for the experiment. In the experimental
setting of long-term feedback, we removed the real-time feedback
module and only used the dual-feedback output of long-term his-
torical feedback. In the experimental setting of real-time feedback,
we only use long-term interests as user interests for feature extrac-
tion, and finally only utilize the dual-feedback from the real-time
feedback module.

The performance results of the experiment are shown in Table 4:
We can observe that removing any module hurts the performance
of the model, but the removal of long-term feedback has a greater
impact on the model than real-time feedback. We believe this is be-
cause the long-term feedback contains a richer search history, and
captures more accurate user preferences to get a higher benchmark
performance. Real-time feedback focuses on modeling the impact
of real-time interaction on query intention, and is better at min-
ing user behavior patterns from the current conversation history.
Therefore, these two modules are not a substitute for each other,
but complement each other in their respective areas of expertise.
Experimental results also show that adding real-time interaction



Table 4: Performance of Long-term Feedback and Real-time
Feedback (on Commercial dataset)

Model MAP MRR P@1
PSDFN-L .8263 -0.1% .8375 -0.1% .7321 -0.1%
PSDFN-S .8240 -0.4% .8348 -0.3% .7313 -0.2%
PSDFN .8273 - .8374 - .7326 -

on the basis of long-term feedback can improve the overall quality
of search.

5.4 Performance of Different Query sets
To explore the specific scenarioswhere ourmodel hasmade progress,
we divide the test set into different subsets based on conditions.
By comparing the performance of the model under different query
test sets, we can infer specific scenarios where the model has made
progress. The details are as follows.

5.4.1 Performance on ambiguous and unambiguous queries. Differ-
ent users may have inconsistent intentions for the same query. We
can use click entropy to describe the degree of inconsistency. Gener-
ally speaking, the higher the degree of inconsistency, the higher the
click entropy and the greater the potential for personalization. Pre-
vious work has pointed out that sometimes personalizing queries
with low click entropy can hurt search quality. Therefore, we divide
the query test set into two subsets according to the click entropy:
the query click entropy in one set is less than 1.0, and the other
is greater than or equal to 1.0. We choose SLTB, HRNN, PSGAN,
PEPS and our model PSDFN to test on these two subsets, and the
performance result is plotted.

The performance result is shown in Figure 2 (a). The delta MAP
of the ordinate refers to the improvement of the MAP relative to
the original sort. In general, all personalization methods improve
the performance both on ambiguous queries (click entropy ≥ 1) and
unambiguous queries (click entropy < 1) compared to the original
ranking. This shows that proper personalization is not only effective
for ambiguous queries, but can also improve the performance for
unambiguous queries. Comparing all personalization methods, our
model performs significantly better than other methods on both sets
of data. These results prove that our model significantly improve
the personalized quality of search results.

5.4.2 Performance on repeated and non-repeated queries. Log sta-
tistical analysis shows that a major feature of user searches is to
initiate repeated queries. Previous studies have shown that special
structures can be designed to enhance repetitive search behavior,
thereby improving the quality of personalization of search results.
At the same time, non-repeated queries cannot directly use the
same search information in the past, which has greater difficulty in
retrieval. Therefore, we can divide the test set according to whether
the query is repeated.

The performance results are shown in Figure 2 (b): On the re-
peated search subset, all the personalization methods significantly
improve the search quality, and our model surpasses all baseline
models. In the non-repeated search subset, the improvement of all
models is significantly lower than that of the repeated query subset.
This shows that non-repetitive queries are more difficult, because
the model must capture content information in the history, but not
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Figure 2: The performance on different query sets.

just the results of historical queries. The degree of improvement of
our model on non-repeated queries also outperforms all baseline
models, which is attributed to more comprehensive user profile
construction.

6 CONCLUSION
In this paper, we propose a dual-feedback network framework for
personalized search to enhance the understanding of search in-
tention. First, we design a hierarchical feedback extraction model,
which can utilize the dual-feedback under similar queries in the
long-term history to modify the representation of the current query.
To further consider the impact of user interaction patterns in the cur-
rent session, we construct a fine-grained feature extraction model
to capture the user’s intention change pattern. After obtaining the
dual-feedback of the two sub-models, we use a multi-layer neural
network to fuse them into unified dual feedback representation
to enhance the current query representation. Experimental results
confirm that our framework is effective for enhancing personalized
search.
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