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Personalized search is a promisingway to improve search qualities by taking user interests into consideration.

Recently, machine learning and deep learning techniques have been successfully applied to search result per-

sonalization. Most existing models simply regard the personal search history as a static set of user behaviors

and learn fixed ranking strategies based on all the recorded data. Though improvements have been achieved,

the essence that the search process is a sequence of interactions between the search engine and user is ignored.

The user’s interests may dynamically change during the search process, therefore, it would be more helpful if

a personalized search model could track the whole interaction process and adjust its ranking strategy contin-

uously. In this article, we adapt reinforcement learning to personalized search and propose a framework, re-

ferred to as RLPS. It utilizes aMarkov Decision Process (MDP) to track sequential interactions between the

user and search engine, and continuously update the underlying personalized ranking model with the user’s

real-time feedback to learn the user’s dynamic interests. Within this framework, we implement two models:

the listwise RLPS-L and the hierarchical RLPS-H. RLPS-L interacts with users and trains the ranking model

with document lists, while RLPS-H improves model training by designing a layered structure and introduc-

ing document pairs. In addition, we also design a feedback-aware personalized ranking component to capture

the user’s feedback, which impacts the user interest profile for the next query. Significant improvements over

existing personalized search models are observed in the experiments on the public AOL search log and a

commercial log.
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1 INTRODUCTION

The search engine has become a necessary tool to help people obtain information from the web in
their daily lives. Users conduct a search with specific query intents, but studies have shown that
their issued queries are usually short and ambiguous, which cannot express the intentions accu-
rately [15, 35]. Let us take the query “MAC” as an example. A makeup artist may issue this query
with the intent of searching for information about the cosmetic brand “MAC,” while an IT engineer
is likely to seek information about “MAC” computer using the same keyword. Returning general
retrieval results about this query to both users may cause them to find unwanted documents that
are relevant to “MAC” but are irrelevant to their individual information need. Personalized search
provides a promising solution for this problem: it re-ranks the general document list for differ-
ent users based on their user preferences and generates more accurate search results. Traditional
strategies of personalized search employ user click behaviors, relevance-based features, and topic-
based features to analyze user interests [4, 8, 10, 15, 19, 31, 39, 43]. In recent years, deep learning–
based models were proposed to learn the representations of user interest profile for mining more
potential preferences [17, 32, 38, 40].

Essentially, a user’s personal search process can be viewed as a sequence of dynamic interactions
between the user and the search engine: in each step of the interaction, the user issues a query
and the search engine generates a document ranking list with the underlying rankingmodel. Then,
the user browses the list, then clicks or skips each document, which we think implicitly reflects
her current interests. During the sequential interaction process, the user’s interests dynamically
change. We expect the search engine to infer the user’s current interests and return an accurate
document list. Most existing personalized search models ignore the dynamic nature of the search
process. They simply regard the historical search sequence as a static set of user issued queries
as well as the retrieved and clicked documents, without sequential information, and they learn a
fixed ranking strategy with all the recorded data. Then, the well-trained fixed ranking strategy is
applied on the subsequent new queries without any update. Recently, some studies [17, 24] have
considered sequential information hidden in the search process and user interests are dynamic.
But they did not pay attention to how the interests change in the process and ignore that the
ranking strategy should also be dynamically adjusted according to the change of user interests. In
this article, we claim that it would be more helpful for search results personalization if user interests

can be modeled dynamically along with the search process and the ranking strategy can be updated

continuously to adapt to the current user interests.

To cope with this problem, we adapt reinforcement learning to personalized search and propose
a novelReinforcement Learning–based framework for Personalized Search (RLPS) in this ar-
ticle. Within the RLPS framework, we model the sequential interactions between the user and the
search engine as aMarkov Decision Process (MDP) [34]. RLPS provides several advantages for
search results personalization. Firstly, by tracking the search process that contains the variations
of the user’s interests with an MDP, it is able to learn the user’s dynamic interests better. Sec-
ondly, RLPS has the ability to dynamically adapt to the user’s current interests as the personalized
ranking strategy is updated continuously with real-time feedback from the user under the rein-
forcement learning framework. Thirdly, compared to existing learning-based personalized search
models, RLPS can be trained with more training samples (annotated with rewards) through the
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trial-and-error strategy in reinforcement learning. This is supposed to relieve the problem of the
limited number of training samples in personalized search.
Reinforcement learning has been successfully applied to information retrieval (IR) [42, 45]

and recommendation systems [49–51], but those specific models are not suitable for personalized
search. In this article, we fully take the characteristics of personalized search into account and
adapt reinforcement learning to design the RLPS framework. The search engine is set as the agent
and the user as the environment. Because sessions are always viewed as search activities with
independent user information need [17, 24], we set a session as an episode to capture the dynamic
user interests. During a session episode, the sequential interactions in RLPS are as follows: the
user issues a query, and the search engine exploits the underlying personalized ranking model to
generate a personalized document list. Then, the user clicks on the returned document list to pro-
vide real-time feedback for the search engine to train the underlying rankingmodel. Records about
this query are added to the user’s search history for updating the user interest profile. Within this
framework, we use an MDP to model the user’s search process and propose two different imple-
mentations with different settings of the MDP, namely, RLPS-L and RLPS-H. RLPS-L is a listwise
model designed to follow the previously described interaction process and train the personalized
ranking model with the sampled document lists. However, studies [21] have shown that the user’s
click actions are biased and not suitable to be used as absolute relevant judgment. Thus, it would
be better to introduce document pairs that indicate user preferences into the personalized ranking
model training. To achieve interacting with document lists but training the model with document
pairs, we improve the flatten RLPS-L with a hierarchical MDP to RLPS-H. In RLPS-H, we utilize
the high-level MDP to track the interactions between the user and search engine in units of query
and document list, and use the low-level MDP to follow all the document pairs constructed under
each query. Both the document lists and document pairs are employed to train the personalized
ranking model. To be consistent with the RLPS framework, we design a feedback-aware person-
alized ranking component that can capture the user’s real-time click feedback. Furthermore, this
model can also use the historical query sequence in the episode to predict the user’s current real
query intent. We adopt the widely used policy gradient algorithm REINFORCE to train RLPS, and
two different approaches are provided for online evaluation and continuous updates. We conduct
experiments on the public AOL search log [26] and log data from a commercial search engine to
compare our proposed framework with state-of-the-art personalized search models. The results
demonstrate that our models can achieve significant improvements over existing models.
Generally, the main contributions of this article can be summarized into four aspects: (1) To

the best of our knowledge, it is the first time that reinforcement learning is being applied to per-
sonalize search. (2) We carefully adapt reinforcement learning to personalized search and propose
a general reinforcement learning–based framework RLPS, which employs an MDP to track the
user’s sequential search process to learn the dynamically changing user interests and fits the per-
sonalized search scenario better. To be consistent, we also design a feedback-aware personalized
ranking component. (3) Within the RLPS framework, we implement two specific models: the list-
wise RLPS-L and the hierarchical RLPS-H. RLPS-L follows the search process and trains the per-
sonalized ranking model with document lists. RLPS-H improves RLPS-L with a hierarchical MDP
and introduces document pairs to train the ranking model better. (4) Experimental results on the
public AOL logs and a query log from a commercial search engine verify that the proposed models
significantly improve the quality of personalized search over state-of-the-art models, especially
the RLPS-H.
This article is an extended version of a paper presented at the Web Conference 2020 (WWW

2020). The main extensions of the journal version are as follows: (1) Based on the proposed single
model in the original paper, we generalize it into a reinforcement learning–based personalized
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search framework RLPS, and implement two alternative personalized search models within this
framework, namely, the listwise RLPS-L and hierarchical RLPS-H. (2) As for the original hierarchi-
cal MDP-based model, which is called RLPS-P in this article, we promote it to RLPS-H through re-
fining the hierarchicalMDP components and adding document lists to train the underlying ranking
model better. (3) The underlying feedback-aware personalized ranking component is also further
improved. Considering query reformulations in a session episode, we add a session-based query
prediction module to help infer the user’s query intent. (4) In addition to the publicly available
AOL search log data, we further conduct experiments on a large-scale commercial query log to
verify the effectiveness of our RLPS framework.
The rest of the article is organized as follows. Related works of this article, including personal-

ized search models and applications of reinforcement learning, are briefly reviewed in Section 2.
We introduce details of our reinforcement learning–based personalized search framework RLPS
in Section 3. In Section 4, we describe the datasets, model settings, and selected baselines. And in
Section 5, we compare and analyze the experimental results. Finally, we make a conclusion of the
whole work in Section 6.

2 RELATEDWORK

The related work to this article mainly concerns two fields: (1) search results personalization and
(2) the applications of reinforcement learning. In the following, we separately introduce the details
of the two parts of research works.

2.1 Search Results Personalization

Personalized search is a hot research field in information retrieval. Its target is to make the search
results of ambiguous or broad queriesmore accurate for each user by incorporating their individual
preferences. Numerous models have been proposed. In general, the basic idea of personalization
is as follows: construct a user interest profile by analyzing the user’s historical queries and click
behaviors; then, re-rank the candidate documents based on the matching scores between the doc-
uments and the created user profile. According to the approaches to analyzing user preferences or
building user interest profiles, we divide current studies into two categories: traditional personal-
ization models and deep learning–based models.
Traditional personalized search models usually depend on mining the click-based features or

document topics from the search history to analyze user interests. Motivated by the users’ re-
finding behaviors [36] in search which imply users issue the same query to search for the same
information, Dou et al. [15] proposed a simple but effective method, P-Click. This method gives
priority to the documents clicked by the user under the same query in the history. Many person-
alization studies [4, 10, 19, 25, 31, 39] adopt topic models, such as the Open Directory Project

(ODP), to analyze topic-based features from the clicked documents and build user profiles in the
topic space. In addition, more fine-grained features about user interests are considered. The SLTB
model [5] extracts a lot of features from the query log, including click-based features, original
ranking position, query entropy, and so forth. Then, it employs a learning to rank (LTR) algo-
rithm LambdaMART [7] to aggregate these features to calculate personalized scores. In addition
to the click-based and topic-based features, the location and reading level of users are also demon-
strated to have certain effects on search results personalization [3, 12]. These traditional methods
manually extract information from the query logs to build user interest profiles, achieving cer-
tain improvements over personalized search. However, some drawbacks still exist since there are
obvious limitations on manual feature design in that the covered information is incomplete.
Benefiting from the automatic learning ability of machine learning and deep learning, the draw-

backs of traditional personalized models have been gradually relieved. Learning-based models
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usually learn a representation of the user interest profile [38] or train a personalized search
model [32] for each individual user. Song et al. [32] and Wang et al. [40] proposed frameworks
that adapt a general ranking model to an individual search model with a small number of queries
from the user. A hierarchical recurrent neural model with a query-aware attention mechanism
(HRNN) [17] was proposed to capture the sequential information from the historical query logs
and dynamically build long-term and short-term user profiles according to the current query. PS-
GAN [24] is a generative adversarial network (GAN) –based personalized search framework,
which enforces the personalized model to pay more attention to the training samples that are
difficult to distinguish and learn a better representation of the user interest profile.
All the aforementioned approaches consider the sequential search process as a static set of user

query behaviors. They learn fixed ranking strategies from all the recorded query logs, without
continuous updates along with the change of the dynamic user interests. Differently, we track
the entire search process and update the personalized ranking strategy continuously, obtaining a
model suitable for the dynamically changing user interests best.

2.2 The Application of Reinforcement Learning

Reinforcement learning is usually used to solve problems that can be regarded as a process of
sequential decisions or interactions [34]. It has been widely applied to IR [28, 42, 45, 47, 48] and
recommendation systems [29, 30, 41, 50, 51]. For the ad-hoc search, Zeng et al. [42] initially pro-
posed a LTR model based on MDP [34], called MDPRank. This model samples a document to rank
at the current position in each step until constructing a ranking list. In other studies, MDP [45]
and multi-armed bandits [28] were utilized to solve the problem of search results diversification.
In addition, Zeng et al. [48] modeled the multi-page search process as an MDP and took the user’s
feedback of the previous pages to optimize the document list of the next page. However, all these
RL-based ranking models proposed for the ad-hoc search task have not taken the user interests,
the whole search history, and future search behaviors into account. Furthermore, the datasets used
in these studies always have precise annotations of document relevance, which is different from
the practical query log data with only noisy click labels used in personalized search.
In recommendation systems, the process during which the system recommends items and the

user gives feedback can be naturally regarded as sequential interactions between the user and the
recommender agent. Thus, there have been a lot of studies modeling the recommendation prob-
lem as an MDP and training models using the reinforcement learning framework. An MDP-based
recommendation system [30] was proposed at an early time to consider the long-term effect of
the current recommended item. Recently, several deep reinforcement learning models [49, 50, 51],
trained by the deep Q-network (DQN) algorithm [34], were proposed to track the sequential
interactions during the recommendation process. Furthermore, a reinforcement learning–based
interaction interface [18] was designed to facilitate the users to express their interests. This inter-
face utilizes reinforcement learning for exploration and exploitation. Both recommendation tasks
and personalized search tasks are supposed to consider the user interests reflected in the interac-
tion history. However, the user does not issue a specific query in recommendation systems, thus,
it is not necessary to consider relevance with queries but only the user interests in recommen-
dation. In this article, we fully consider the characteristics of personalized search to design our
reinforcement learning–based framework RLPS.

3 RLPS—A REINFORCEMENT LEARNING–BASED FRAMEWORK FOR

PERSONALIZED SEARCH

In this article, we focus on the essence that a user’s personal search history can be regarded as
a sequential interaction process between the user and the search engine. During the interaction
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Fig. 1. Illustration of the interaction in RLPS framework. The search engine is the agent and the user is the
environment.

process, the user’s interests dynamically change. To learn a personalized ranking strategy fitting
to the dynamically changing user interests best, we leverage the reinforcement learning on the
problem of personalized search and propose a framework RLPS. In this framework, we utilize
an MDP to model the user’s entire interaction process and continuously update the personalized
ranking strategy with the user’s real-time feedback.
In this section, we first demonstrate the whole architecture of the proposed framework RLPS.

Then, we introduce the implementations of two personalized search models within the framwork,
namely, the listwise model RLPS-L and the hierarchical model RLPS-H. Finally, we describe the
policy gradient training algorithm and the online test algorithm in detail.

3.1 RLPS—The General Framework

In our framework, we treat the personalized search engine as the agent, the user as the environ-
ment, andmodel the sequential interactions between the user and search engine as a reinforcement
learning process, which is illustrated in Figure 1. This process and the personalization problem to
be solved can be formulated with corresponding notations as follows. At each timestepT , the user
u with search historyHT issues a queryqT . The underlying non-personalized searchmodel returns
a general ranking list DT of candidate documents. Facing the current environment {HT ,qT ,DT }
composed of the user’s search history, issued query, and returned general document list, the per-
sonalized search engine is expected to take an action aT . It analyzes the user’s search history HT

to construct the user interest profile, then utilizes its current personalized ranking model MT to
re-rank the candidate documents in DT based on the created user profile and generate a person-
alized document ranking list D ′T . Then, the user browses the document list D ′T and clicks or skips
documents, based on which a reward rT is calculated to indicate the quality of the ranking result.
The personalized search engine (agent) updates the current ranking model MT to MT+1 based on
the search data and received reward rT . The environment turns into a new state when the user
enters a new query qT+1. The new search history in the new state includes the last query qT and
search resultD ′T , i.e.,HT+1 = HT + {qT ,D ′T }. The user interest profile will also be different from the
last one due to the new search history. During the interaction process, the personalized ranking
model is updated based on the user’s real-time click feedback continuously until it converges to
the optimal model.
The search process described above can be considered as a sequential decision process in which

the personalized search engine determines the order of the documents in the document list re-
turned to the user. We can mathematically formalize the process as an MDP, which is always

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 27. Publication date: May 2021.



RLPS: A Reinforcement Learning–Based Framework for Personalized Search 27:7

Fig. 2. Illustration of the RLPS-L model. During the sequential interaction process, each time the user issues
a query and the search engine returns a document list.

represented as a tuple 〈S,A,T ,R,π 〉, including the state, action, transition, reward, and policy, and
apply the policy gradient algorithm to train the underlying personalized ranking model. There-
fore, there are two main parts in the RLPS framework: the components of the MDP tuple and the
underlying personalized ranking model. We can design these modules in different ways to gener-
ate distinct personalized search models within this framework. In this article, we implement two
typical models: the listwise RLPS-L and hierarchical RLPS-H. And we describe the two models in
the next sections.
Through formulating the problem as a reinforcement learning process, our RLPS framework

shows several advantages for personalized search:
(1) RLPS tracks the sequential interaction process and captures the user’s interest variations

during the search process to learn the dynamically changing user interests better.
(2) Along with the interaction process, the RLPS framework continuously updates the ranking

strategy with the user’s newly issued queries and real-time feedback to obtain a personalized
ranking model fitting the user’s current interests better.

3.2 RLPS-L: Listwise RLPS

During the sequential interaction process described in the RLPS framework, the user and the search
engine interact in units of query and document list: each time the user issues a query and the
search engine returns a document list. Thus, we naturally propose a listwise RLPS model, i.e.,
RLPS-L, in which we set each step of the reinforcement learning process to correspond to a query
and an action of the agent is to generate a document list to be returned. In personalized search, we
are committed to analyze the user interests reflected in the search process to help generate more
accurate ranking results. Existing reinforcement learning models designed for ad-hoc retrieval [42,
48] mainly aim to optimize the search result of each single query, regardless of the impacts of other
queries, which are not suitable for the personalization problem. Considering that users usually
have consistent search intents in a search session, we set a session as an MDP episode and aim to
maximize the long-term return of a whole session. The architecture of the listwise model RLPS-L
is shown in Figure 2, and the details about each component of the MDP tuple are introduced as
follows.
State S is a set of states describing the environment. In personalized search, the search engine

(agent) is expected to re-rank the candidate documents based on both the user issued query and
the user interests reflected in the search history. Therefore, we define the state at the step T as
sT = {HT ,qT ,DT }. Consistent with the framework described in Section 3.1,HT is the user’s search
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history before the current query qT , and DT is the list of candidate documents for qT returned by
the original non-personalized search model.
Action A is a set of actions the agent can select, which depends on the current state sT and is

also denoted as A(sT ). In the listwise RLPS-L model, we are supposed to generate a personalized
document list in each step. Given that we can regard the task of search results personalization as re-
constructing a ranking list with the candidate documents based on user interests, we define the ac-
tion set of the RLPS-Lmodel as all possible permutations of documents in the list. The personalized
search engine takes an action aT to select a document ranking list to return to the user. Considering
the size of the permutation space is too large and that valid clicks usually happen on the first few
documents, we mainly focus on permutations of the first k documents (k is a hyper-parameter).
For example, supposing we set the parameter k as 3 and there are five documents in DT sorted
by the original non-personalized search model, i.e., DT = {d1, . . . ,d5}; the action set of the RLPS-
L model should be {(d1,d2,d3), (d1,d3,d2), (d2,d1,d3), (d2,d3,d1), (d3,d1,d2), (d3,d2,d1)} + (d4,d5).
Through action sampling in reinforcement learning, every permutation is likely to become training
data with reward as the label, increasing the number of training samples comparedwith supervised
learning models.
Transition T (S,A) is a function T : S ×A→ S that maps the current state to the next state

after an action was taken. The search engine takes an action aT to return a documents list, which
the user browses and clicks. Then, the user issues a new query qT+1, and the behavior information
about the current query is added to the user’s search history. The transition is expressed as the
following equations:

st+1 = T (st ,at ) = {Ht+1,qt+1,Dt+1}, (1)

Ht+1 = Ht + {qt ,D ′t }. (2)

Reward R (S,A) provides a supervision signal for the model training in reinforcement learn-
ing and is used to measure the quality of actions. After the search engine (agent) takes an action
to return a document ranking list, the user will browse the list to click or skip the documents.
This generates a relevance label for each document. Then, based on these labels, values of some
evaluation metrics such as the normalized discounted cumulative gain (NDCG), mean av-

erage precision (MAP), the number of inverse document pairs, and so on can be calculated on
this document list. Because we complete search result personalization by re-ranking the original
non-personalized document list, we use the difference between the evaluation value of the docu-
ment list selected by aT and the original document list Dt as the reward. A higher reward means
a greater improvement by our personalized ranking model. For example, we utilize the evaluation
metric MAP as our reward function and calculate rewards as

rT = MAP (aT ) −MAP (DT ). (3)

Policy π (a |s ) : A × S → [0, 1] is a probabilistic distribution over the action set calculated with
the current state, used as the policy to direct actions. From the descriptions above, we know that
any action in A(sT ) corresponds to selecting a possible permutation of the document list. We can
calculate a personalized score for each document with a personalized ranking model, obtaining
a list of scores LSCi = {sci1, sci2, . . . , scin }. Referring to the listwise LTR models ListNet [9] and
ListMLE [23], we compute the probability of each document list Li to obtain the final behavior
policy π (a |s ) as follows.

score (Li ) =
k∏
j=1

exp(sci j )∑n
l=j

exp (scil )
, (4)

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 27. Publication date: May 2021.



RLPS: A Reinforcement Learning–Based Framework for Personalized Search 27:9

π (ai |sT ) =
exp(score (Li ))∑

Lj ∈A(ST ) exp (score (Lj ))
. (5)

Here, the first k documents in the original non-personalized document list DT are arranged, and
n is the total number of documents in DT .

In RLPS-L, we can apply any learning-based personalized ranking models to compute the per-
sonalized scores for candidate documents, such as HRNN [17] or our proposed PHRNN model
described in Section 3.3.2.

3.3 RLPS-H: Hierarchical RLPS

RLPS-L can successfully track the sequential interaction process to capture the user’s dynamically
changing interests and update the ranking strategy continuously. However, when we consider the
characteristics of personalized search, we find several aspects to improve.
First, studies have shown that users’ click behaviors are noisy and biased, and clicks cannot be

used as absolute relevant judgments [21]. Because of this, the existing pointwise RL approaches [42,
48] and the simple listwise RLPS-L model may not perform adequately in the personalized search.
Thus, we plan to exploit click preferences and adopt a pairwise learning to rank algorithm to train
the underlying personalized ranking model in RLPS. The agent needs to determine the relative
order of a document pair in each step.
Furthermore, during the actual interaction process, the search model is expected to return a

document list to the user at each time, and we also hope it to sample all the document pairs under
each query for model training. Therefore, in a session episode, we need to take account of both
the document lists and document pairs. To implement interacting with the document lists and
sampling all document pairs under each query for model training, we design a hierarchical RLPS-H
model with a hierarchicalMDP. In this method, we use the high-levelMDP tomodel the interaction
process with the user in units of query and document list, while in the low-level MDP, the model
is required to process all document pairs under each query. Finally, both the document lists and
document pairs are used for model training. We use T and t to represent the step number of the
two levels, respectively.
In addition, we also design a feedback-aware personalized ranking component called PHRNN to

capture the user’s feedback. PHRNN is introduced in Section 3.3.2. The architecture of the proposed
RLPS-H model including the hierarchical MDP structure and the underlying personalized ranking
component PHRNN is shown in Figure 3. The details of each component are introduced as follows.
State. There are two levels of MDP in this model. As for the high-level MDP of interactions,

the state at each step T is defined as sT = {HT ,qT ,DT }, which is the same as RLPS-L. In the low
level, it is necessary for the search engine to sample all document pairs under the current query
qT to train the ranking model. We use PT = {pT1 ,pT2 , . . .} to represent the set of document pairs
comprised of all documents in DT . The model needs to determine the relative order of a document
pair in each step t . Thus, we have the state sTt = {HT ,qT ,DT ,p

T
t }.

Action. In the high-level MDP, the search engine is required to return a personalized document
list D ′T to the user at each step T . We define the action A(sT ) as generating a document list based
on the personalized scores of the documents calculated by the current ranking componentMT . In
each step t of the low-level MDP, the agent compares the relevance of the two documents in the
document pair pTt = (di ,dj ). Thus, the action set A(sTt ) can be defined as all possible relationships
of the two documents, i.e., di is more relevant than dj {(di > dj ), the two documents have the same
relevance (di = dj ), and di is less relevant than dj (di < dj )}. The search engine samples an action

aTt to determine their relative relationship.

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 27. Publication date: May 2021.



27:10 J. Yao et al.

Fig. 3. Illustration of the RLPS-H model. The hierarchical MDP is on the top whose high level tracks the
sequential interactions in units of query and document list, and low-level samples all document pairs under
each query to train the ranking model. The proposed ranking component PHRNN used to compute the
personalized scores for documents is at the bottom. Each query in the search history is represented by a
series of document pairs.

Transition. In the high-level MDP of the interaction, the transition happens when the user
inputs a new query qT+1, and the information of the current query is added into the user’s
search history. As for the low-level MDP, with the clicked document list, we create a set of doc-
ument pairs PT , and the agent takes an action aTt to judge the relative relationship of the two
documents in the pair pTt step by step. All the document pairs in PT , the actions, and the cor-
responding rewards are collected to update the personalized ranking model from MT to MT+1.
Consequently, the transition function T for the hierarchical MDP is expressed as the following
equations:

sTt+1 = T (sTt ,a
T
t ) = {hT ,qT ,DT ,p

T
t+1}, (6)

sT+1 = T (sT ,aT ) = {hT + {qT ,D ′T },qT+1,DT+1}. (7)

Reward. In the hierarchical RLPS-H model, we focus on using both document lists and docu-
ment pairs as the training data. For document lists, we follow the RLPS-L model to use the evalua-
tionmetric difference as the reward.With regard to document pairs, we refer to the state-of-the-art
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pairwise LTR algorithm LambdaRank [6] to calculate our reward. In LambdaRank, there is a ma-
trix � where each element λi, j denotes the difference between the metric values before and after
exchanging the documents di and dj in the ranking list. This matrix reflects the relative relation-
ship of the documents. Unlike those supervised learning models that calculate the matrix � based on

the document list recorded in the query log, our model calculates it based on the currently returned

personalized document list D ′T in the interaction. Such real-time feedback reflects the user’s current

interests, which can help RLPS train the personalized ranking model better. We give a positive λ to
the document pairs that are determined correctly by the model and a negative λ to the incorrectly
determined pairs. The evaluation metrics can be MAP, the number of inverse document pairs, and
so on.
Policy. Actions of the high-level MDP that is generating a personalized document list directly

depends on the calculated personalized scores. Therefore, we only need to compute the policy for
actions in the low-level MDP. From the descriptions above, we know that any action a ∈ A(sTt )
corresponds to a possible relative order of a document pair. Referring to the pairwise loss, we
calculate the probability of any action as follows:

π (aTt |sTt ) =
exp
(
f ′
(
aTt
))

∑
a∈A(sTt ) exp ( f

′ (a))
, (8)

f ′(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

f (di |sTt ) − f (dj |sTt ) a = (di > dj )
0 a = (di = dj )
f (dj |sTt ) − f (di |sTt ) a = (di < dj )

, (9)

where f (di |sTt ) and f (dj |sTt ) are the personalized scores for documents di and dj calculated by the
current personalized ranking model MT . We design a feedback-aware personalized ranking

component specifically to adapt to our reinforcement learning–based RLPS framework, which is
introduced in Section 3.3.2.

3.3.1 The Mixture Policy. Under standard reinforcement learning framework, the model is ran-
domly initialized at the beginning. It may perform unstably and even converge to a worse state.
To speed up the model learning process and ensure the model effects, we refer to the imitation
learning and make some adjustments to the action policy in the RLPS framework. In addition to
the action policy calculated by the agent, we also create an expert policy to direct the search en-
gine how to interact with the user. The expert policy, denoted as π̃ , is a deterministic policy built
on the user’s feedback, which merely gives probability to the action leading to the largest reward,
defined as

π̃ (aT |sT ) =
{
1, i f aT = argmaxaT ∈A(sT ) R (aT , sT )
0, otherwise.

(10)

The final behavior policy is obtained by linearly combining the expert policy π̃ (aT |sT ) and the
MDP calculated policy π (aT |sT ) as follows:

π̂ (aT |sT ) = ϵ ∗ π̃ (aT |sT ) + (1 − ϵ ) ∗ π (aT |sT ), (11)

where ϵ is a hyper-parameter used for balancing the two parts. The expert policy can be regarded
as the annotation in supervised learning, and it can help the model to converge faster. But we
still expect to apply the exploration of reinforcement learning. Thus, following [29], we set the
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balancing parameter ϵ to decay exponentially at the rate of p, i.e.,

ϵ ← ϵ ∗ p, 0 ≤ p ≤ 1. (12)

In this way, the expert policy can direct the actions at the early stage to speed up themodel learning
process and keep the model stable. Then the action policy calculated by the agent becomes more
important for directing behaviors, playing the advantages of reinforcement learning.

3.3.2 Feedback-Aware Personalized Ranking Component. In the previous descriptions about the
RLPS framework and two implemented models, we mentioned a personalized ranking model that
is used to build user interest profiles, calculate personalized scores for documents to generate
ranking lists, and compute the action probability in Equation (4) and Equation (8). It can be any
deep learning–based personalized model. In this article, to adapt to the reinforcement learning
framework RLPS, we follow the state-of-the-art personalized model HRNN [17] and make some
improvements on it to design our ranking model PHRNN. In HRNN, each query in the search his-
tory is represented by the concatenation of the query vector and the average vector of all clicked
documents under this query, but those unclicked documents are totally ignored. In actual recorded
query logs, users’ click behaviors are usually noisy and cannot be used as absolute relevant judg-
ment [21]. Some behaviors may be biased by document positions. Moreover, we also employ the
relative relationships between documents to train our personalized ranking model with a pairwise
learning to rank algorithm. Thus, it will be more beneficial for personalization and model training
if information about the user’s preferences can be mined from the historical data. Therefore, in our
personalized ranking model PHRNN, we keep all document pairs for each historical query instead
of merely clicked documents. Each query is represented by a set of document pairs constructed
on the returned document list, and each pair corresponds to a concatenated vector (q,d+,d−, λ).
q is the query vector, d+ and d− are vectors of the clicked and unclicked documents, respectively.
λ is a weight for this document pair, which is calculated by LambdaRank [6]. The meaning of the
weight λ has been expressed in Section 3.3. This weight can catch user’s click feedback, getting a
feedback-aware personalized ranking model fit to the RLPS framework with real-time inter-
actions and user feedback. Note that the weights are not calculated on the document list recorded
in the query log but on the current document list generated by the ranking model and the user’s
clicks in the interaction. This feedback is added to the user’s history when it turns into the next
query, and it will have impacts on the user interest profile for the subsequent queries. In addition,
we set a search session as an episode in our RLPS framework, which also contains the variations
and reformulation of query strings. Thus, we refer to some query suggestion models [20, 33] and
implement a query intent prediction module in PHRNN. This module encodes the historical query
sequence to obtain a representation vector as the real query intent. The concrete calculation for
personalized document scores of our proposed personalized ranking model PHRNN is introduced
as follows.
Recall that in the RLPS framework, the state faced by the search engine is sT = {HT ,qT ,DT }, and

the ranking model is required to compute personalized scores for candidate documents. PHRNN
splits the whole search history HT into the long-term history and short-term history, i.e., HT =

{LTu , STM }, and analyzes the short-term and long-term user interests from them, respectively. The
short-term history refers to the past queries in the current session, which usually have consistent
query intent with the current query, and queries in the previous sessions constitute the long-term
history. The personalized score for documents is determined by the relevance from four aspects:
the relevance with the currently issued query, the relevance with the short-term user interests, the
relevance with the long-term user interests, and that with the predicted query intent. In particular,
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the personalized ranking score f (d |sT ) of the documentd is calculated with the following formula:

f (d |sT ) = f (d |{HT ,qT ,DT }) (13)

= F (score(d |qT ), score(d |STM ), score(d |LTu ), score(d |qP )).

Here, f (·) denotes the score function, and F is an MLP layer used to combine the four relevance
scores. score(d |qT ), score(d |STM ), score(d |LTu ), and score(d |qP ) represent the relevance with the
query, short-term interests, long-term user interests, and the predicted query intent, respectively.
qP represents the predicted query intent. The structure of PHRNN is shown at the bottom in
Figure 3, as the underlying personalized ranking model of the agent. In the next, we briefly de-
scribe the key components of the PHRNN model, and more details about calculation, which is the
same as HRNN, can be found in [17].
(1) For score(d |qT ), we follow the SLTB model [5] to extract some click-based and topic-based

features, such as original position of the document and click entropy of the current query, repre-
sented as vqT ,d . Moreover, considering our previous idea that unclicked documents are important
for us to capture user preferences, we also cover several additional features about the skipped
documents. This relevance score is computed by aggregating these features with an MLP layer,
tanh(·), as the activation function:

score(d |qT ) = tanh(F (vqT ,d )). (14)

(2) For score(d |STM ), we use a low-level RNN l to capture the sequential information in the cur-
rent session and build the short-term interest profile. First, we represent each query as a ma-
trix DPM,i composed of all document pair vectors, containing the user’s preferences under this
query. Each document pair is denoted as a concatenated vector (q,d+,d−, λ). Then, we apply a
self-attention layer [37] and a dense layer to encode the document pair matrix into a single em-
bedding of the query qM,i , i.e.,

qM,i = F (attention(DPM,i ,DPM,i ,DPM,i )), (15)

where attention(·) is the attention function and F represents the dense layer. The embedding
sequence of all queries in the current session are fed into the low-level RNN l step by step,
hli = RNN l (hli−1,qM,i ), and we take the last-step output hlnM as the short-term user profile. The
relevance score between the short-term user interest and the document d is calculated by cosine
similarity as

score(d |STM ) = sim(hlnM ,d ). (16)

(3) For score(d |LTu ), we use a high-level RNN h and a query-aware attention mechanism to dy-
namically build the long-term user profile according to the current query, taking the short-term
profile vectors of the past sessions {hln1

, . . . ,hlnM−1 } as the input. First, we compute the hidden state

of the past sessions step by step, hhm = RNN h (hhm−1,h
l
nm

). Then, the attention weights for all the

historical session vectors are calculated through a dense layerwti = σ (F (qT ,h
h
i )), and normalized

to αi with a soft-max function. Finally, we obtain the long-term user profile as the weighted sum
of the historical session vectors and compute the relevance score.

h
h,qT

M−1 =
M−1∑
i=1

αih
h
i , (17)

score(d |LTu ) = sim(h
h,qT

M−1 ,d ). (18)
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(4) For score(d |qP ), we first use an RNN to encode representations of all past queries in the
current session into a vector h

q

M
. Then, an MLP layer is built on the vector to process it and get the

predicted query intent qP . The relevance between the document and the predicted query intent is
computed as the cosine similarity, i.e.,

score(d |qP ) = sim(qP ,d ). (19)

3.4 Training with Policy Gradient

In this article, we adopt the widely used policy gradient algorithm REINFORCE [34, 44] to train the
underlying personalized ranking model of the agent. The parameters of the model to be learned
mainly include the parameters for building user interest profiles, predicting the query intent and
computing the personalized scores. Here, we take the hierarchical model RLPS-H as an example
and describe its training approach as follows. As for the listwisemodel RLPS-L, the training process
is the same, but the created training samples are different.
At first, we track each user’s search process to sample interaction episodes and generate training

data for the REINFORCE algorithm. In RLPS-H, we consider a search session Sm as an interaction
episode and a hierarchical MDP is applied. The high-level MDP processes document lists while the
low-level MDP is for document pairs constructed on the list. For the queryqT issued at the timestep
T in the session, the agent first takes an action aT in the high-level MDP. It computes personalized
scores for the candidate documents with the current personalized rankingmodel to generate a doc-
ument ranking list, and the user clicks on the list to give feedback rT . Then, the agent processes all
document pairs constructed on the generated document list in the low-level MDP. For each docu-
ment pair pt in step t , we compute the mixture action policy π̂ (a |sTt ) and sample an action aTt to
determine the relative relationship of the two documents in the pair. The expert policy is calculated
according to the user’s click feedback. And a reward rT+1t+1 is given to the action based on the λ cal-
culatedwith the user’s click feedback on the returned document list. After all the document pairs of
the current query qT are processed, it turns to the next query qT+1. Until the end of this session, an
interaction episode is obtainedE = (s1,a1, r2, s

1
1,a

1
1, r

2
2 , s

1
2, . . . , snm ,anm , rnm+1, s

nm
n ,a

nm
n , r

nm+1
n+1 ).n is

the number of document pairs under each query, and nm is the total number of queries in this ses-
sion Sm . We separate the high-level and low-level MDPs into Eh = (s1,a1, r2, . . . , snm ,anm , rnm+1)

and El = (s11,a
1
1, r

2
2 , s

1
2, . . . , s

nm
n ,a

nm
n , r

nm+1
n+1 ), and use both the document lists and pairs sampled in

the whole episode to update the model at the same time. In order to facilitate the description of
the policy gradient training algorithm below, we merge the episodes of the two levels together
and simplify the representation as E = (s1,a1, r2, s2, . . . , sN ,aN , rN+1), where N represents the to-
tal number of steps in the episode.
For each sampled episode E, we are able to incorporate the future performance and calculate

the discounted cumulative reward starting from each step t as Gt .

Gt =

N−t+1∑
k=1

γ k−1rt+k , (20)

where γ is the discounted factor. Then we can split the whole episode E into many transitions
(st ,at ,Gt ) as training samples to train the underlying personalized ranking model. In order to
make more effective use of these sampled data, we follow another reinforcement learning algo-
rithm DQN [34] to apply memory replay technology. This model maintains all the sampled tran-
sitions in the memory space and randomly samples a mini-batch of transitions from the memory
to update the model every time.
In the policy gradient algorithm, the discounted cumulative long-term return of the start state

s1 is usually regarded as a valid evaluation of the model’s performance. Therefore, we define the
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ALGORITHM 1: Training with REINFORCE

Input: training set D, learning rate η, discount factor γ , reward function R, batchsize B
Output: well-trained parametersw
initializew randomly, a replay memory RM = []

repeat

for all Sm ∈ D do

sample an episode E = (s1,a1, r2, s2, . . . , sN ,aN , rN+1)
compute and store the N transitions (st ,at ,Gt ) into RM
sample B transitions (st ,at ,Gt ) from RM
compute gradient �w ← 1

B (
∑B
i=1Gt �w logπ (at |st ;w ))

update the parametersw ← w + η �w
end for

until converge

return w

expectation of the long-term value starting from the first step as the optimization of our model,
represented as J (w ).w is the parameters in the ranking model to be trained.

J (w ) = Eπ̂ ([G1]). (21)

G1 in Equation (21) is the value of Gt when t is equal to 1.
Deduced from the above two formulas, the gradient �w J (w ) in the REINFORCE algorithm can

be calculated as

�w (J (w )) = Gt �w log π̂(at |st ;w ), (22)

where at is the action sampled under the state st and the mixture behavior policy π̂(a |st ,w ).
We train the underlying personalized ranking model of our RLPS framework, i.e., the PHRNN

model described in Section 3.3.2, with a mini-batch of samples every time and update the parame-
ters according to the gradients calculated in Equation (22). The complete procedure is formulated
in Algorithm 1.
Here, we make a brief discussion about the efficiency of our RLPS framework. Concerning the

model training process, we know that a model trained under the reinforcement learning frame-
work usually converges more slowly than those supervised models and may fall into a worse
state. We have introduced a deterministic expert policy as the behavior direction and form a mix-
ture policy to speed up and stabilize the model training process. After the training process of the
underlying personalized ranking model is completed, the RLPS framework costs about the same
time as other deep learning–based personalized search models to build the user interest profile
and re-rank the documents. Thus, compared with existing personalized models, our RLPS does
not obviously impact efficiency.

3.5 Testing Online

Different from the existing supervised models for personalized search, RLPS proposed in this arti-
cle is an interactive framework based on reinforcement learning. It tracks the user’s entire search
process as an interaction sequence with the search engine, and continuously updates the underly-
ing personalized ranking strategy with the user’s real-time feedback. With this kind of setting, the
RLPS framework can be directly applied to an actual search situation, in which it interacts with
users. In this section, we elaborate the algorithm about how to do an online test with our trained
models, imitating the actual search situation.
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Fig. 4. Illustration of the two online test approaches. Approach 1 trains a shared personalization model
offline, and applies the same model for all users online, updating it with new queries issued by any user.
Approach 2 clones a separatemodel from the sharedmodel for each individual user, and updates the personal
model with queries from the corresponding user.

Suppose we have trained a model offline, and it is online for users to use from now. A search
session is viewed as an episode. In each round of interaction at the timestep T in a session, the
user uploads a query qT to the personalized search engine. Facing the state sT = {HT ,qT ,DT }, the
search engine takes an action to return a personalized document list to the user. Then, the user
provides real-time feedback to the agent by clicking or skipping the returned document. With the
feedback as annotations, the agent generated several training samples for the underlying person-
alized ranking models. The user will continuously issue the next query qT+1, and the information
about the current query is added to the user’s search history to update the user interest profile.
Until the end of this search session, the agent updates the personalized ranking model with the
annotated training samples generated during the whole episode. Above is the online update pro-
cess. Following the same procedure but using a little different settings, we design two approaches
for online usage. We illustrate the operating process of the two online test approaches in Figure 4.
(1) We first train a shared personalized ranking model offline based on all users’ query logs

under the RLPS framework, and then launch the only model online for all users to use. During the
process of online test, we update the ranking model continuously with newly issued queries by all
users according to the online test algorithm described above.
(2) Ideally, each user can have its own personalized rankingmodel enhanced from her individual

query data. But it is impractical to train a separate ranking model from scratch for each individual
user due to the limited amount and sparsity of personal query log data. To ensure the performance
of the personalized model for each user, we still first train a shared model with all users’ query
logs offline. Then, we create a separate model cloned from the shared model for each individual
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Table 1. Statistics of the Datasets

Dataset AOL Dataset Commercial Dataset
Train Valid Test Train Valid Test

#session 187,615 26,386 23,040 71,731 13,919 12,208
#query 814,129 65,654 59,082 188,267 37,951 41,261
avg query len 2.845 2.832 2.895 3.208 3.263 3.281
avg #click 1.249 1.118 1.115 1.194 1.182 1.202

user and launch it online. Each cloned individual model is updated only when the corresponding
user issues new queries.
We experiment to evaluate the two online testing strategies in Section 5.

4 EXPERIMENTAL SETTINGS

4.1 Dataset and Evalution Metrics

We select two non-personalized search log datasets to evaluate our model, which avoid the biases
caused by other personalized models. Their statistics are presented in Table 1.
AOLDataset. This is a publicly available dataset containing 3 months of search log fromMarch

1, 2006 to May 31, 2006. Each record includes a user ID (anonymous), a session ID, a query, the
time when the query was issued, a clicked document, and its ranking position in the original
returned ranking list. There are 657,426 users and 16,946,938 queries in this log. We conduct some
pre-processing on the dataset, including filtering all non-alphanumeric characters in the queries,
segmenting sentences into words and lowercasing all the texts. Then, we compute the query vector
by averaging the embeddings of all the terms in the query, and the document representation is
calculated as the weighted average of each word embedding multiplied by its TF-IDF weight [17].
Furthermore, we also split the search sequence into sessions in the same way as [2, 22], with
boundaries decided by the similarity between two consecutive queries.
Considering that most personalized search models achieve search results personalization by

analyzing user interests from their individual search history, as well as our proposed PHRNN, we
separate the whole query log into the historical data and experimental data. The query logs before
April 3, 2006 are designated as the historical data, which is used as the background to indicate user
interests. The last 8 weeks’ search data is regarded as the experimental data, which are further
divided into the training set, validation set, and testing set with a 6:1:1 ratio. To ensure that all
users have sufficient personal search history for building user interest profiles, we remove those
users with search history less than three sessions.
In the AOL search log, only clicked documents are recorded for each query, without unclicked

documents. But we have claimed that users’ click behaviors are noisy and preference information
reflected by document pairs composed of a positive document and negative document is more reli-
able. Thus, we follow [1, 2] to sample unclicked documents and construct the candidate document
list for each query. For a given query, we first rank all recorded documents in the query log with
the BM25 algorithm. Then, we navigate to the positions of the clicked documents under this query
and sample a fixed number of candidate documents centered at these positions. We sample a total
of five candidate documents per query for the training set and validation set, while 50 candidate
documents for each testing query.
Commercial Dataset. This search log is collected from a commercial search engine during the

time period from January 4, 2013 to February 28, 2013. The original commercial search engine
has not employed personalization techniques so that our experimental results on this dataset are
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guaranteed not to be influenced by other personalized search models. There are a total of 354,063
users and 3,503,934 queries. Each query record in this log contains a user id, a query string, query
issued time, the top 20 URLs retrieved by the original search engine, click labels, and their dwelling
time. We follow [5, 15, 17] to segment each user’s entire query log into sessions by longer than 30
minutes of inactivity time, obtaining 654,774 sessions in total.
We follow [5, 17, 39] to annotate the relevance for documents. Clickswith longer than 30 seconds

of dwelling time or the last click of a search session can be viewed as clicks that the user is really
satisfied with, i.e., SAT-click. For a URL without SAT-click under the current query, if a SAT-click
occurs on it in the following two queries that have at least one commonURLwith the current query,
we also give a SAT-click to this URL. Such processing can help us augment effective data. Finally,
documents with SAT-click are regarded as relevant documents while the others are irrelevant
documents. To ensure that all users have enough personal search history for analyzing the users’
interests, we first divide the query log into experimental data and search history data which is
only for mining user interests not for training or testing. Logs in the first 6 weeks are used as
the historical data and the last 2 weeks logs as the experimental data. The experimental data are
further split into the training set, validate set, and testing set by session with 4:1:1 ratio.
Evaluation. Following [42, 50], we use the users’ click behaviors recorded in the query logs to

simulate the real-time feedback in the interaction process. Supposing that the SAT-clicked doc-
uments are relevant, and the other documents are irrelevant, we utilize the widely used ranking
metrics MAP, mean reciprocal rank (MRR), and precision at 1 (P@1) to evaluate our model.
And we also utilize the average ranking position of the documents with SAT-click to measure the
model’s quality, denoted as Avg.Click [17]. A lower value of this metric indicates a better ranking
model. In addition, considering the fact that users’ click actions on the original document lists are
influenced by the original order, some documents are not clicked may not be because they are
irrelevant but because of their low rankings. Consequently, the generic evaluation metrics calcu-
lating with the SAT-click labels and positions may be somewhat problematic. Stated in [13, 21], it
is more reasonable to take the documents skipped above the SAT-click and the non-clicked next
documents as irrelevant. In this work, we use this approach to collect inverse document pairs from
the original ranking, and follow [17, 24] to define a more credible metrics P-Improve. P-Improve is
the percentage of the increased correct pairs compared with the original search results. Detailed
calculations can be referred to in [24]. Note that we only compute the P-Improve metric on the
commercial query log, because its recorded document lists are really displayed to the users. How-
ever, the original ranking lists of the AOL dataset are constructed by BM25, without returning to
users.

4.2 Baselines

With regard to the AOL dataset, the original rankings are generated with the classical BM25 al-
gorithm. The original document lists of the commercial dataset are directly returned by the cor-
responding search engine. In addition to the original rankings, we select several state-of-the-art
neural ranking models, personalized search models, and a reinforcement learning–based learn-
ing to rank model as the experimental baselines. The details about all these models are listed as
follows:
(1)KNRM+User:KNRM [46] is a kernel-based neuralmodel for document ranking. It constructs

a word similarity matrix between the query and document, and then employs a kernel-pooling
technique on this matrix to extract multi-level soft match features. All these match features are
combined with a learning-to-rank function to calculate the final ranking score. To introduce user
interests into KNRM, we add the user profile construction module in the HRNN model.
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(2) Conv-KNRM+User: This model [14] is an upgrade of KNRM. Instead of considering only
single terms, it first utilizes convolutional neural networks to represent n-grams of various lengths
and soft matches them. Then, the kernel-pooling technique and learning-to-rank layer are applied
to those n-gram soft matches. Furthermore, the component of constructing user profiles is also
combined.
(3) P-Click: Inspired by the users’ re-finding behaviors that users often issue the same query to

search for the same results, Dou et al. [15] proposed a basic personalization strategy P-Click. This
model re-ranks documents based on the number of clicks the user made under the same query in
the search history with Borda Count ranking fusion method [16]. P-Click brings great benefits to
repeated queries.
(4) SLTB: Bennett et al. [5] extracts diverse features from the search history to analyze user

interests, including click-based features, topic-based features, query entropy, and so on. All
these features are aggregated by the pairwise LTR algorithm LambdaMart [7] to generate the
final personalized ranking list. SLTB was regarded as the best before applying deep learning
models.
(5) HRNN: This study [17] uses a hierarchical recurrent neural network with query-aware at-

tention mechanism to dynamically build the short-term and long-term user interest profiles. It
focuses on the sequential information hidden in the search process and highlights the historical
queries relevant to the current query. Then, documents are re-ranked based on the relevance with
the short-term and long-term user profiles.
(6) PSGAN: [24] is a personalized search framework aiming to overcome the problem of noisy

training data on the basis of generative adversarial network (GAN). It can generate queries that
express the user’s query intent better and enforces the model to pay more attention to the doc-
ument pairs that are difficult to distinguish. We implement the document selection–based model
PSGAN-D in this paper.
(7)MDPRank:MDPRank [42] is a learning-to-rank model based on the reinforcement learning

framework. It employs a MDP to model the construction process of a document ranking list. Each
step corresponds to sampling a document from the candidate set to rank at the current position,
and the promotion of DCG [11] after appending the document is defined as the reward. To adapt
to personalized search, we add the module of user interest profile construction in HRNN [17] to
the original MDPRank model.
(8) RLPer: This is the original model proposed in the WWW 2020 paper. It can be regarded as

a pairwise implementation within our framework.

4.3 Model Settings

Parameter settings for our personalized ranking component PHRNN are referred to HRNN [17].
We train a 50-dimension Glove model [27] with the whole query log as the corpus, and obtain
representations for the queries and documents by averaging the vectors of their terms. The short-
term interest representation and the long-term interest representation are 300-dim. and 600-dim.,
respectively; the dimension of the hidden state is 300. The number of hidden units in the attention
layer is 300, and that of the MLP is 512. More details can be found in HRNN [17].
To determine the parameters of our RLPS framework, we conduct multiple sets of experiments

under the supervision of the validation set. Finally, the parameters are set as follows. The learning
rate is 1e − 4 and the reward discount factor is 0.8. As for the mixture policy, the weight of the
expert policy ϵ initialized as 1 and the decay rate p as {0, 0.9}. In the query logs, we find about
80% of the SAT-clicks occur on the first three documents. Thus, in the listwise model RLPS-L, we
consider the permutation of the first three candidate documents, i.e., k = 3.
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Table 2. Overall Performances of Models on the AOL Set

Model MAP MRR P@1 Avg.Clk

Random Rank 0.0924 −82.96% 0.09611 −82.67% 0.0233 −95.41% 25.53 141.9%

BM25 0.2504 −53.83% 0.2596 −53.18% 0.1534 −68.4% 17.53 66.08%

P-Click 0.4224 −22.11% 0.4298 −22.49% 0.3788 −21.96% 16.52 56.61%

SLTB 0.5072 −6.47% 0.5194 −6.33% 0.4657 −4.06% 13.92 31.98%

HRNN(list) 0.4116 −24.10% 0.4227 −23.77% 0.3425 −29.44% 15.64 48.25%

HRNN(pair) 0.5423 - 0.5545 - 0.4854 - 10.55 -

PSGAN-D 0.5480 +1.05% 0.5600 +0.99% 0.4892 0.78% 10.26 −2.70%
MDPRank 0.2728 −49.70% 0.2826 −49.04% 0.1727 −64.42% 15.84 50.16%

KNRM+User 0.4722 −12.93% 0.4836 −12.79% 0.3243 −33.19% 7.55 −28.45%
ConvK+User 0.4901 −9.63% 0.5018 −9.50% 0.3456 −28.80% 7.32 −30.56%
PHRNN 0.5509 +1.59% 0.5638 +1.68% 0.4911 +1.17% 10.06 −4.65%
RLPS-L 0.5182 −4.44% 0.5309 −4.26% 0.4545 −6.37% 10.82 −4.65%
RLPS-P 0.5981∗ +10.29% 0.6127∗ +10.50% 0.5368∗ +10.59% 8.29∗ −21.41%
RLPS-H 0.6032∗ +11.23% 0.6185∗ +11.54% 0.5402∗ +11.29% 8.22∗ −22.09%
Relative performances compared with HRNN are in percentages. RLPS-P and RLPS-H models significantly outperform

all the personalized search baselines with paired test at p < 0.01 level. ∗ is used to indicate the significant improvements

and the best results are in bold.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In order to analyze and verify the effectiveness of our proposed framework comprehensively, we
evaluate our framework and other baselines on the processed AOL search log and the commercial
dataset. We report the experimental results in the following subsections and make some analysis.

5.1 Overall Performance

At first, we test all selected baselines and our proposed models PHRNN, RLPS-L, and RLPS-H on
both search logs, and compare their overall performance on the whole dataset to measure the
effectiveness of our models. To be consistent, we test all models offline without any update. Ex-
perimental results of the AOL search log are shown in Table 2 and those of the commercial dataset
are in Table 3. From the two tables, we can find the following:
(1)With regard to all evaluation metrics, our proposed RLPS framework shows signif-

icant improvements over the corresponding baselines with paired t-test at p<0.05 level.

Pay attention to the listwise RLPS-L; it outperforms our implemented listwise HRNN a lot, with
25.89% improvement on MAP and 32.70% on MRR on the AOL dataset. As for our proposed hier-
archical RLPS-H, it promotes the state-of-the-art HRNN model greatly, with 11.23% improvement
on the metric MAP, 11.54% on MRR, and 22.09% decrease on the Avg.Click metric. In addition, the
RLPS-H model also performs much better than PSGAN, which exploits the generative adversar-
ial network to enhance the training data of the personalized search model HRNN and achieves
certain effects. With our reinforcement learning–based RLPS framework, more samples can also
be obtained to train the underlying ranking model through the trial-and-error strategy. Thus, the
promotion of our RLPS-H model over PSGAN demonstrates that not only the enhancement of
training samples but also other advantages of our framework claimed in the former parts play a
role in improving personalized search: First, our framework can capture the dynamic user interests
better by training the user’s search process. Second, the personalized ranking model is updated
continuously along with the interactions based on the user’s real-time feedback to maintain the

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 27. Publication date: May 2021.



RLPS: A Reinforcement Learning–Based Framework for Personalized Search 27:21

Table 3. Overall Performances of Models on the Commercial Dataset

Model MAP MRR P@1 Avg.Clk

Ori.Rank 0.7399 −8.26% .7506 −8.36% 0.6162 -13.54% 2.211 16.25%

P-Click 0.7509 −6.89% 0.7634 −6.80% 0.6260 -12.17% 2.189 15.09%

SLTB 0.7921 −1.79% 0.7998 −2.36% 0.6901 −3.17% 1.959 3.00%

HRNN(list) 0.7969 −1.19% 0.8093 −1.20% 0.6961 −2.33% 1.915 0.68%

HRNN(pair) 0.8065 - 0.8191 - 0.7127 - 1.902 -

PSGAN-D 0.8135 +0.87% 0.8234 +0.52% 0.7174 0.66% 1.815 −4.57%
MDPRank 0.7654 −5.10% 0.7786 −4.94% 0.6421 −9.91% 2.059 8.25%

KNRM+User 0.5316 −34.09% 0.5401 −34.06% 0.3149 −55.82% 2.431 27.81%

ConvK+User 0.6272 −22.23% 0.6377 −22.15% 0.4488 −37.03% 2.385 25.39%

PHRNN 0.8085 +0.25% 0.8213 0.27% 0.7149 0.31% 1.891 −0.58%
RLPS-L 0.8102 0.46% 0.8223 0.39% 0.7154 0.38% 1.853 −2.58%
RLPS-P 0.8186∗ +1.50% 0.8302∗ +1.36% 0.7263∗ +1.91% 1.797∗ −5.52%
RLPS-H 0.8202∗ +1.70% 0.8322∗ +1.60% 0.7277∗ +2.10% 1.783∗ −6.26%
Relative performances compared with HRNN are in percentages. RLPS-P and RLPS-H models significantly outperform

all the personalized search baselines with paired test at p < 0.05 level. ∗ is used to indicate the significant improvements

and the best results are in bold.

user’s latest interests. To summarize, the great performance of RLPS confirms the effectiveness of
adapting the reinforcement learning framework to search results personalization.
(2) Comparison of the two implementations within the framework shows that the hi-

erarchical RLPS-H model further improves the results a lot on the basis of the listwise

RLPS-L model.We know that the RLPS-H model tracks the user’s sequential interaction process
from a more fine granularity than RLPS-L, and further samples document pairs which indicate
user preferences to train the underlying personalized ranking model. We stated in the previous
section that document pairs reflect more valid user interests. And the better performance of RLPS-
H indicates the effectiveness of training the personalized ranking models in a pairwise way.
(3) Focusing on our proposed feedback-aware PHRNN, we find that the PHRNNmodel per-

forms slightly better than the original HRNN model. We believe that one reason for the
better performance of PHRNN is that taking the user’s preferences reflected in the document pairs
into consideration is more beneficial for learning the user’s interests than using merely the clicked
documents, especially for the noisy dataset.
(4) All the personalized search models promote the original rank results a lot, and this

confirms that personalized search has the potential to satisfy the user’s information need

better and enhance her search experience. The improvement of the P-Click model [15] proves
that there exist some re-finding behaviors in search. The diverse features about users, queries, and
documents collected in SLTB [5] can be used to effectively analyze users’ interests. Due to the out-
standing representation learning ability of deep learning, models based on deep learning achieve
the best personalization, including HRNN, PSGAN, our improved PHRNN, and the reinforcement
learning–based framework RLPS. The great performance of PSGAN and RLPS also confirms the
validity of enhancing the training samples for personalized models.
However, the adapted reinforcement learning–based pointwise LTR model MDPRank does not

perform so well on personalized search. We analyze it may be that it is a ranking model specially
designed for the ad-hoc search and it does not consider the search process, the long-term reward,
and user interests. Furthermore, MDPRank was only proved to perform well on the datasets with
precise annotations of document relevance, while the actual AOL query log and commercial dataset
used in our experiment are noisy and biased. The worse performance of MDPRank also indicates
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Table 4. Results of the Ablation Experiments on the AOL Set

Model Variation MAP P@1 Avg.Click
RLPS-H(off) 0.603 - 0.540 - 8.22 -
-Session 0.584 −3.2% 0.523 −3.1% 8.79 +6.9%
-RL 0.565 −6.3% 0.508 −5.9% 9.36 +13.8%
Online test1 0.605 +0.3% 0.543 +0.6% 8.20 −0.3%
Online test2 0.606 +0.5% 0.546 +1.1% 8.17 −0.6%
“-Session” means setting a query as an episode and “-RL” means training the RLPS-

H model in a supervised way. Online test1 is the method that maintains a shared

updated model, and online test2 means maintaining a separate model for each user

during the test.

the necessity of designing an RL-based model specifically for personalized search. In addition, the
two neural IR models combined with user profiles also do not achieve great performance on the
commercial dataset. We infer it is because the neural IR model performs worse than the original
rankings.
In conclusion, the overall experimental results verify that our proposed framework RLPS can

learn dynamic user interests better than the other evaluated baselines and is able to obtain better

personalized ranking model through updating it continuously with the user’s real-time feedback.

5.2 Ablation Analysis and Discussion

In order to analyze how our proposed RLPS framework improves search result personalization and
the contribution of each component or setting, we conduct an ablation study about the RLPS-H
model on the public AOL dataset. According to the experimental results presented in Table 4, we
present some discussions in the following.
Session vs. Query. In reinforcement learning, we usually consider the long-term return of

the current action to adjust the policy. Thus, we set a session, which is a search process with
independent user intent, as an episode to employ the user’s interaction process to help learn their
interests better. To confirm the effectiveness of this configuration, we compare it with setting a
single query as an episode, ignoring the user’s feedback from interactions before and after the
single query. The result is shown in the second line in Table 4; we find the model loses 2.3% in
MAP, 2.5% in P@1, and increases Avg.Click by 6.06%. These results clearly suggest that our RLPS
framework tracking the user’s interaction process helps capture user interests. We think it may be
because the latter queries in the same session can help clarify the user’s current query intent.
RL vs. Supervised learning.We adapt the reinforcement learning framework to personalized

search in this article. Compared to supervised learning, it can produce more training samples with
the trial-and-error strategy and update the model with the user’s real-time feedback. To verify
the validity of reinforcement learning, we conduct an experiment to train the RLPS-H model in a
supervised way. As presented in Table 4, the model trained with the ground-truth drops by 5.5%
in MAP, 5.3% in P@1, and increases 12.8% in Avg.Click. The results prove that the reinforcement

learning framework helps train the personalized ranking model better than supervised learning. More
training samples play a big role.
Static vs. Continuous update. Inmost cases, we train a personalized rankingmodel offline and

test it without updates in a short time. Instead, our proposed RLPS framework can interact with
users to update the underlying ranking model continuously with real-time feedback when applied
in an actual search situation. Two different approaches are presented in Figure 4. We conduct
an online test and show the experimental results in the last two lines in Table 4. We find both
approaches further improve the offline results in terms of all metrics. The second approach, which
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Fig. 5. The weights in the attention layer of HRNN (“H”) and RLPS-H (“R”) for two same queries issued by
a user. In the figure, “f” indicates the former query, and “l” means the latter.

maintains a separate model for each user, demonstrates superior performance. This improvement
indicates that the continuous update mechanism generates a better ranking strategy fitting to the

dynamic user interest. And the excellent performance of the second online test approach inspires
us that it can be more effective to keep a unique model for each individual user.
To display the continuous update of our framework more intuitively, we visualize the weights

in the attention layer for two same test queries issued at different times. We compare the weights
with the baseline HRNN [17] and show the results in Figure 5. In HRNN [17], the attention
weights are calculated based on the current query and historical queries. We can find the attention
weights of the two queries are different in our RLPS-H model though the two queries are the
same, while the weights in HRNN are the same. It proves that our model has been updated
between the two test queries to fit the current user interests better.

5.3 Effects of Different Reward Functions

In our reinforcement learning–based RLPS framework, rewards are calculated with an evaluation
metric based on the returned document list. We describe an example of the MAP metric. Actually,
there are some other available evaluation metrics, such as MRR, P1, and the number of inverse
document pairs in the returned document list. In this experiment, we train the personalized rank-
ing model with rewards computed on MAP, MRR, and #Inverse pair, respectively, and illustrate
the model performances in Table 5.
Focusing on Table 5, we find that the models trained with different reward functions show simi-

lar performance. Although different evaluation metrics are employed, we follow the LambdaRank
algorithm to compute the rewards so that their relative values are consistent. In reinforcement
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Table 5. The Performance of RLPS-H with Different Reward Functions, Including MAP, MRR, and
#Inverse Pair (the Average Number of Inverse Document Pairs in the Returned Document Lists)

Reward Function MAP MRR P@1 Avg.Clk
MAP 0.6032 - 0.6185 - 0.5402 - 8.22 -
MRR 0.6011 −0.35% 0.6168 −0.27% 0.5388 −0.26% 8.56 4.14%
#Inverse Pair 0.6028 −0.07% 0.6178 −0.11 0.5398 −0.07% 8.51 3.53%

Fig. 6. Performance of RLPS-H with different values of epsilon and decay rate on the AOL dataset.

learning, rewards are used to measure the quality of actions, and the relative value of rewards
should be more important than the absolute value for model training.

5.4 Effects of the Mixture Policy

Under the RLPS framework, we do not apply the standard reinforcement learning to train the
underlying personalized ranking model but a mixture policy, which creates an expert policy to
direct the agent actions and speed up the model training process at an early stage. At the same
time, we also set two hyper-parameters, epsilon ϵ and decay rate p, to control the ratio of expert
policy and calculated policy. In order to confirm the effects of the mixture policy, we experiment
with several groups of epsilon and decay rate. The learning curves of RLPS-H are shown in Figure 6.
From Figure 6, we observe that the model trained with standard reinforcement learning con-

verges much slower than those with a mixture policy. This result proves that the mixture policy
has the ability to speed up model training. Comparing the two mixture policies, i.e., ϵ = 1,p = 0.9
and ϵ = 0.8,p = 0.8, we find the former converges faster, but the latter has the potential to achieve
better performance in the later stage. We infer that it is because a too large ϵ might limit the ex-
ploration of reinforcement learning. Thus, we suggest that a large ϵ in the early stage and a proper
decay rate p are helpful for producing a better model.

5.5 Experiments on Different Query Sets

For analyzing the specific contribution of our model on search result personalization, we split all
queries into different subsets. Then, we evaluate RLPS-H on different query sets of the AOL log
and report the results as follows.
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Fig. 7. Results on queries with different click entropy on the AOL dataset.

Ambiguous and non-ambiguous queries. First, we consider the model performance on am-
biguous and non-ambiguous queries. The former mainly refers to queries that can be interpreted
into several meanings by different users and need more personalization, while the latter tends to
express a single intention. As stated in [15], click entropy can reflect how ambiguous a query is.
Thus, we categorize all queries into two groups with the cutoff of click entropy at 1.0. Improvement
on the MAP metric over the original BM25 rankings is viewed as the evaluation metric. Figure 7
shows the results on the two query groups, respectively.
From Figure 7, we observe that all personalized search models improve the search results on

both the clear and ambiguous queries greatly. And all models consistently perform better on the
non-ambiguous queries. As for our RLPS framework, it shows the best results on both query
groups. Compared to the closest baseline HRNN, both our listwise RLPS-L and hierarchical RLPS-
H presents significant improvements. In addition, the RLPS-H promotes the original RLPS-P to
some extent, which verifies the effectiveness of document list samples.
Repeated and non-repeated queries. Second, we divide the testing query set into repeated

and non-repeated queries according to whether they have appeared in history. For those repeated
queries, many traditional models exploit the click features in the search history to help ranking,
such as the P-Click algorithm based on the user’s re-finding behaviors, SLTB, and so forth. How-
ever, it is difficult for them to cope with non-repeated queries due to a lack of information. In terms
of the learning-based models, we expect they have the ability to predict document relevance for
queries even without direct click-based features. We compare all models’ performance on the two
query groups, and results are shown in Figure 8.
From Figure 8, we observe that all the personalized search models perform much better on the

repeated queries than non-repeated queries. The promotion on the repeated queries confirms that
most personalized search models have the ability to take advantage of the click-based features
to improve the ranking results. Our proposed models consistently perform the best on both the
two groups. Though the RLPS-L model performs a little worse than HRNN on repeated queries,
it shows greater effects on non-repeated queries. And the RLPS-P and RLPS-H models make a
relatively greater promotion on non-repeated queries. This further demonstrates the effectiveness
of our framework to capture the user interests from the search history to better cope with queries
issued by the user even for the first time.
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Fig. 8. Results on repeated/non-repeated queries on the AOL dataset.

Fig. 9. Experimental results about accumulative reward on the AOL dataset.

5.6 Experiments on Accumulative Reward

In reinforcement learning, the model’s optimization target is to maximize the expected long-term
return of the initial state. In the RLPS framework, we view all query behaviors in a session as an
episode, so that the model is expected to maximize the discounted sum of rewards in a session. To
verify the validity of our proposed models from this perspective, we design the metric average
accumulative reward to evaluate all the baselines and RLPS. We only consider the rewards given
to the returned document lists in the sequential interactions, and calculate the average of the
accumulative rewards of all sessions. Finally, we show the performance of all models in Figure 9.
Compared with all baselines, we observe that RLPS achieves the highest value of average ac-

cumulative reward, which meets our expectation and further confirms the correctness of our
framework. In addition, a larger accumulative reward in a session indicates that we can satisfy the
user’s query intent in a session better, and our personalized search models seem more effective in
the long run.
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6 CONCLUSION

The personal search process can be regarded as sequential interactions between the user and search
engine, duringwhich the user interests dynamically change. The existing personalized searchmod-
els train a fixed ranking model based on all recorded log data and do not update it in a short time.
In this article, we propose a reinforcement learning–based framework RLPS, applying an MDP to
track the user’s interactive search process and continuously update the underlying personalized
ranking model with the user’s real-time feedback. We set the search engine as the agent and the
user as the environment. Each time when the user inputs a query and clicks on the result, RLPS is
able to get rewards from the user’s feedback, update the ranking model, and create the user profile
with new history. Specificaly, we implement the framework in two different ways, namely, RLPS-
L and RLPS-H. In RLPS-L, we track the interactions and train the personalized ranking model in
units of document lists. As for RLPS-H, we consider a hierarchical structure in which the high-
level processes document lists and the low-level captures document pairs with user preferences
for model training. Experiments on the public AOL search log and the commercial log data verified
the effectiveness of our proposed models. Search is a complex interactive process between users
and search engines. In this article, we give a preliminary attempt to model the sequential inter-
actions with a reinforcement learning framework and exploit the most direct user behaviors, i.e.,
click actions. In the future, we plan to further explore the user’s interaction patterns with better
models.
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