
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 1

Enhancing Potential Re-finding in Personalized
Search with Hierarchical Memory Networks

Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen

Abstract—The goal of personalized search is to tailor the document ranking list to meet user’s individual needs. Previous studies
showed users usually look for the information that has been searched before. This is called re-finding behavior which is widely explored
in existing personalized search approaches. However, most existing methods for identifying re-finding behavior focus on simple lexical
similarities between queries. In this paper, we propose a personalized framework based on hierarchical memory networks (MN) to
enhance the identification of the potential re-finding behavior. Specifically, we explore the potential re-finding behaviors of users from
two dimensions. (1) Granularity dimension. The framework carries out re-finding identification with external memories from word,
sentence, and session levels. (2) Query intent dimension. Query-based re-finding and document-based re-finding are taken into
account to cover user’s different query intents. To enhance the interaction between different memory slots, we optimize the READ

operation of MN with two strategies that utilize the information in memory in a multi-hop way. Endowed with these memory networks,
we can enhance user’s potential re-finding behaviors and build a fine-grained user model dynamically. Experimental results on two
datasets have a significant improvement over baselines, and the optimized READ operation shows better performance.

Index Terms—Personalized search; Re-finding identification; Hierarchical memory networks.

F

1 INTRODUCTION

U SERS usually get information from the internet by
issuing a query to the search engine. Under the same

query, most common search engines return the same result
without distinction for all users. However, even for the same
query, the real intentions of different users are often differ-
ent, especially for ambiguous queries [1, 2]. Personalized
search is a possible way to solve this problem. It tailors the
original ranking of results to meet user’s individual needs.

The key to personalized search is how to build user
models accurately. Previous studies have shown that the
user’s query log contains plenty of personalized informa-
tion that can help learn user profiles [3–9]. They extracted
features from a large-scale click data to model the user.
However, these manually designed features may not fully
cover every aspect. With the emergence of deep learning,
new personalization approaches were proposed to learn the
semantic representation and extract features hidden in the
search history automatically [5, 10–12]. They have success-
fully improved the quality of personalized search.

Although the strategies of personalization are different,
most of them pointed out that users often seek information
they have encountered before. This phenomenon is called
re-finding behavior, which can be used to build user models
in personalized search in a reliable way. Previous studies
on modeling re-finding behavior attempted to examine the
features from multiple angles to predict the clicks on viewed
documents [13, 14]. However, these studies mainly identify
the re-finding behaviour based on lexical similarity, which
cannot cover semantically similar situations. In fact, some

• Y. Zhou, Z. Dou, and J.-R. Wen are with the School of Information,
Beijing Key Laboratory of Big Data Management and Analysis Methods,
DEKE, Renmin University of China, Beijing 100872, P.R. China. E-mail:
zhouyujia, dou@ruc.edu.cn, jirong.wen@gmail.com.

Manuscript received; revised

queries look different, but express the same intent, like ”new
Apple computer profile” and ”new macbook introduction”.
The actual re-finding behavior in search engines is much
more complicated than this. In this paper, our goal is to
strengthen the identification of users’ potential re-finding
behaviors for personalized search, especially those that can-
not be identified simply by lexical rules. Due to the powerful
ability of deep learning to learn representation, we intend
to apply it on capturing re-finding behavior in semantic and
model the sequential information hidden in them.

Previous personalized search approaches with deep
learning tried to build sequential user profiles over queries
or sessions using the recurrent neural network (RNN)
[10, 12]. These methods have been shown effective to model
user interests over time by encoding historical interaction
into a hidden state vector. However, this highly abstract
encoding approach is not conducive to capture fine-grained
user preference. Memory network has made progress on
many sequential-based tasks (e.g. reading comprehension,
sequential recommendation) due to the ability of extracting
information from large-scale data and its great interpretabil-
ity [15, 16]. Its advantages fit our needs for building a
fine-grained user model based on re-finding. Motivated by
the powerful representation ability of MN, we propose to
enhance user’s potential re-finding behavior based on it.

According to the user’s information needs, we clas-
sify the re-finding behavior into two categories: tracking
information about a certain topic or just for finding one
document [17]. In the first case, users typically issue similar
queries to get information. We can predict the user’s next
click behavior by analyzing his historical click data under
these queries. In the second case, we are able to summa-
rize the user’s query habits for finding the document, and
identify the re-finding by comparing the current query with
his habits. To cover both cases, we design two separate

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 2

memories, a query memory and a document memory, for
storing user historical interactions from two different angels.
In fact, users often issue a series of queries in a session for a
single information need. They might show the same query
intent over sessions. To identify this situation called session-
based re-finding, we design an intent memory to store user
past query intent of each session.

Specifically, we design a model for personalized search,
which focuses on the re-finding behavior with external
memories we stated above. Different historical behaviors
have unequal contributions to the re-finding. Thus, we
attempt to highlight relevant words and historical behaviors
stored in the word memory, query memory and document
memory based on their relevance to the current needs. And
then we further model the session-based re-finding with the
help of intent memory to build a more accurate user model.
Finally, by matching the user model and the current needs,
we compute the probability of the document being clicked
under two types of re-finding and predict the personalized
search results. Additionally, we extend our model to a
multi-hop version, which can dig deeper into the effective
information in the memory network.

Our main contributions are summarized as follows. First,
we make use of external memories to enhance user re-
finding behavior for personalized search in an interpretable
way. Second, in order to cover more complex re-finding,
we analyze user re-finding behavior from word, query, and
document respectively, and further consider session-based
re-finding. Third, based on the characteristic of re-finding
that a document is more likely to be irrelevant if it has
been ignored in history, we consider the negative impact of
unclicked documents to model the user interests. This paper
is an extended version of the WSDM 2020 paper [18]. The
main extensions of this journal version are: (1) We extend
our model to a hierarchical memory network, including
three levels of re-finding identification from word, sentence,
and session. Specifically, we add a word memory to empha-
size the impact of important words in queries based on user
past interactions, which is simply implemented by TF-IDF
weights in the original paper. (2) We refine the READ oper-
ation of memory networks with two optimization strategies
to improve memory utilization, while in the original paper,
we simply used a single vanilla attention. (3) We further
test the effect of the model on the public dataset AOL
search log. The performance on this dataset not only tests
the personalization ability of the model, but also reflects the
ability to match query and document in semantic.

In the rest of the paper, related works are summarized in
Section 2. Our personalized model is introduced in Section
3. We demonstrate the experimental settings and results in
Section 4, and draw the conclusion in Section 5.

2 RELATED WORK
2.1 Personalized Search
Search results personalization has been shown to effectively
improve the quality of search engines [4]. The main goal
of personalized search is to re-rank the results to meet the
individual needs of different users, depending on the user’s
interests. In traditional methods of personalized search, the
main personalized features extracted from historical search

data focus on click number and topic similarity [7, 19–
22]. The former is widely used due to its availability and
reliability. Dou et al. [2] counted the number of clicks on
the documents in history to re-rank the original document
list. Teevan et al. [6] followed this approach to identify
personal navigation with individual behavior for search
results personalization. The topic-based features have gone
through a transition from manual design to automated
learning [19, 23]. Due to the incomplete category of manual
design, such as Open Directory Project (ODP), some studies
proposed to learn a latent topic of the document automati-
cally with Latent Dirichlet Allocation (LDA) [7, 9, 20, 22].
With the emergence of learning to rank methods, recent
studies [3, 23, 24] combined these two types of features to
train a ranking model by the LambdaMART algorithm [25].

The above methods have made great progress, but the
incomplete features are still a problem due to the limitations
of manual design. Deep learning has become a possible
solution to this problem. In the field of personalized search,
Song et al. [5] proposed a general ranking model based
on user individual adaptation. Li et al. [11] made use of
semantic features powered by deep learning to improve the
in-session contextual results. Ge et al. [10] used hierarchical
recurrent neural networks to model user short- and long-
term interests and highlighted the relevant interests by
query-aware attention. Lu et al. [12] proposed a generative
adversarial network framework to train the network with
noisy click data. These methods make use of deep learning
for semantic modeling and achieve better results. Different
from previous studies, we attempt to combine deep learning
with memory networks to enhance user re-finding behavior.

2.2 Re-finding Identification
Re-finding behavior is a common phenomenon in informa-
tion retrieval. Users often use the same or similar queries
to retrieve previously viewed documents. Previous studies
on re-finding behavior mainly focused on re-finding identi-
fication. Teevan et al. [14] analyzed the query log to predict
whether the user will click on the same document when
the user submitted a query that has ever issued. Tyler et
al. [26] observed different types of re-finding behavior in
inter-session and intra-session and measured the likelihood
that re-finding behavior occurs at different positions in a
session. Later, Tyler et al. [13] utilized re-finding for search
results personalization. The results showed the reliability
of re-finding prediction for personalized search. Elsweiler
and Ruthven [17] performed a diary study that classified
the re-finding tasks according to user’s information needs.
To more accurately identify the re-finding behavior, more
kinds of features are used to model the query log. Ko-
tov et al. [27] examined the features from three aspects:
session-based features, history-based features, and pairwise
features. However, the above methods only consider lexical
features, while ignoring the re-finding behavior based on
semantic similarity. In this paper, we intend to combine the
lexical and semantic features, and alleviate the problem of
incomplete features with deep learning.

2.3 Memory Networks
Memory network was first proposed by Weston et al. [15]
to solve the problem of insufficient representation ability of

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 3

Table 1
Notations in the paper.

N. Definition N. Definition

u a user U u’s historical log
Q a set of queries D a set of documents
q a query d a document
qs(v) the q‘s string (vector) ds(v) the d’s URL (vector)
q′ a refined query d′ a refined document
M an external memory m a slot of M
d+ a satisfied document d− a skipped document
dq average document of q qd average query of d

traditional deep learning models. They proposed a general
memory network framework, including input, generation,
output and response modules. Some subsequent studies
have optimized the model structure based on it. Sukhbaatar
et al. [28] put forward the end-to-end memory networks
which improves the training process, and extended the
model to multiple layers. Miller et al. [16] designed the
key-value memory networks to fit the question-answering
task. They used additional knowledge (knowledge base,
Wikipedia) to find answers. Apart from these basic memory
networks, some novel structures have been proposed to
make up for the shortcomings of previous models. For
instance, Henaff et al. [29] recorded the world state with
recurrent entity networks. Chandar et al. [30] devised hierar-
chical memory networks to speed up training. And Liu et al.
[31] constructed gated end-to-end memory networks which
introduced the gate mechanism to achieve regularization of
memory. In recent years, memory networks is popular in
many research fields, such as dialogue systems, question
answering systems, and recommendation systems. In this
paper, we intend to apply it to personalized search for
building fine-grained user profiles.

3 RPMN - A HIERARCHICAL MEMORY NETWORK
ENHANCED RE-FINDING MODEL FOR PERSONAL-
IZED SEARCH

Tailoring the ranking of search results according to individ-
ual interest can improve the quality of the retrieval model.
As we stated in Section 1, existing personalized search meth-
ods are weak in modeling potential re-finding behavior.
Inspired by the ability of memory networks to capture fine-
grained user preferences, we present a personalized search
model with memory networks focusing on the re-finding
behavior. With the help of external memories, we expect to
screen out historical behaviors that are related to current
needs and identify the re-finding behavior in semantic.

We define the notations used throughout the paper
in Table 1. Suppose that for user u, his historical log
U includes a series of issued queries and click informa-
tion on the documents retrieved by search engine, i.e.
U = {{q1, D1}, ..., {qi, Di}, ..., {qn, Dn}}, where qi is the
ith query in the query log and Di is the document list
retrieved for qi. Given a new query q and its original search
results D = {d1, d2, ...}, we predict the probability of each
document being clicked according to personalized data U ,
and re-rank the document list D combining the relevance to
the query q. The final probability of the document d being
clicked is denoted as p(d|q, U).

As we have introduced in Section 1, the re-finding
behavior can be roughly summarized into two categories:
using similar queries to find unspecified documents or just
for finding a viewed document. For simplicity, we call these
two categories query-based re-finding and document-based
re-finding. The former focuses on the similarity between
the candidate document and the user interested documents
under similar queries, while the latter pays more attention to
the historical queries containing the similar documents. We
use p(d|Uq) and p(q|Ud) to represent the probability of the
document being clicked under these two types of re-finding.
The final probability consists of three parts:

p(d|q, U) = φ
(
p (d|Uq) , p(q|Ud), p (d|q)

)
(1)

where p(d|q) represents the adhoc relevance between each
candidate document and the query, and φ(·) is a Multilayer
Perceptron (MLP) with tanh(·) as activation function, which
is used to combine the three parts with different weights.

The structure of our model is shown in Figure 1. At
first, we set the word memory to emphasize the words in
the current query or document according to the words that
the user has interacted in the history. Secondly, in order to
handle the query-based re-finding and the document-based
re-finding, we devise two external memories to highlight the
historical behaviors from query and document respectively.
And then, with the help of RNN, we construct the intent
memory to model the re-finding over sessions. Finally, we
get the probability by matching the user profiles with the
current needs to re-rank the results. In the remaining parts
of the section we will introduce the details.

3.1 Highlighting Relevant Historical Behaviors Dynam-
ically
Although there is a large amount of personalized informa-
tion in the query log, the same information contributes dif-
ferently in different situations. So we expect to dynamically
enhance the influence of relevant historical behaviors based
on the current need, especially those with re-finding value.
To utilize each query and document more comprehensively,
we get their vector representation from two aspects. (1)
Based on word embedding, which is good at capturing
the relation at the semantic level. Their representation are
computed by weighting the words together with re-finding
weights from the word memory MW . (2) Based on graph
embedding, which measures the distance according to co-
occurrence probability. This method constructs the historical
interactions into a graph and learns the representation of
each node. Finally, the representation of each item is gener-
ated by concatenating the vectors of two methods.

As we discussed above, to deal with the re-finding
behavior in personalized search, we use external memories
which can store the query logs in detail to identify the
re-finding behavior in an interpretable way. For covering
two types of re-finding, we set up a query memory MQ

and a document memory MD to record user historical
behaviors. Note that our model builds memories for each
user independently to store his personal behavior.

3.1.1 Word Memory
We build this memory for measuring the importance of each
term in queries and documents. Higher weight should be

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 4

𝑞

𝑞1
𝑣

𝑞2
𝑣

𝑞𝑛𝑄
𝑣

𝑚1
𝑄

𝑚2
𝑄

𝑚𝑛𝑄
𝑄

···

···

···

···

···

··· 𝑞′

𝐷𝑞

𝑞𝑑1
𝑑1
𝑣

𝑑2
𝑣

𝑑𝑛𝐷
𝑣

𝑚1
𝐷

𝑚2
𝐷

𝑚𝑛𝐷
𝐷

···

···

···

···

···

···
···

𝑑′

𝑑

𝑄𝑑

𝑞𝑑2

𝑞𝑑𝑛𝐷

𝑑𝑞1
𝑑𝑞2

𝑑𝑞𝑛𝑄

···

··
·

··
· ··
·

··
· ··
·

··
· ··
·

··
·

𝑣1
𝐼

𝑘1
𝐼

𝑆1

···

𝑘2
𝐼

𝑆2

···

𝑘𝑛𝐼
𝐼

𝑆𝑛𝐼
······

𝑆1

···

𝑣2
𝐼

𝑆2

···

𝑣𝑛𝐼
𝐼

𝑆𝑛𝐼

······

𝐾𝑑

𝑉𝑞

Interested Document

Query Intent

K-kernel

K-kernel

𝑑 𝑑′

𝑞 𝑞′

𝑀𝑄

𝑀𝐷

𝑀𝐼

Relevance features

𝑝(𝑞|𝑈𝑑)

𝑝(𝑑|𝑈𝑞)

𝑝(𝑑|𝑞)
𝑝(𝑑|𝑞, 𝑈)

𝑑1,1

𝑞1,1

Document-based re-finding

Query-based re-finding

𝛼𝑠 𝛼𝑣

𝑞1,2

𝑑1,2

𝑤2
𝑣

𝑤3
𝑣

𝑤𝑛𝑤-1
𝑣

···

𝑀𝑊

𝑒1

𝑒2

𝑒𝑥

···

Document

TF-IDF

Word-level Sentence-level Session-level Matching

Query

𝛼𝑤𝑤1
𝑣

𝑤𝑛𝑤
𝑣

𝑒1 𝑒2 𝑒𝑥···

𝑒1 𝑒2 𝑒𝑥···

Figure 1. The architecture of RPMN. Given a new query and a candidate document, relevant historical behaviors are highlighted by three external
memories from word, query and document. After extracting session-based re-finding behavior using intent memory based on the current needs,
personalized information for query-based re-finding (blue lines) and document-based re-finding (orange lines) are collected. Combining relevance
features, we get the final probability for personalization.

given to the word that have been issued many times in the
past. Traditional TF-IDF weight only considers the case of
exact matches and global importance, but we should also
focus on synonyms and personal information. We believe
that the weight of the current word is determined by his-
torically related words. The word memory records vector
representations of words contained in the user’s past queries
and clicked documents, denoted as MW = {wv

1 , ..., w
v
nW
},

where nW is the number of words. Suppose that the current
query q contains x terms, i.e. q = {e1, ...ex}, the re-finding
weight αw

i of the word ei is computed by:

αw
i =

nW∑
j=1

S(ei, wv
j), (2)

where S(·) is cosine similarity which keeps the values
greater than a certain threshold, which is set to 0.7. These
related words reflect the re-finding potential of the current
word to which we need pay more attention. To consider
the importance of words from both global and personal as-
pects, we combine the re-finding weight and TF-IDF weight
together by normalizing the weights and averaging them.
Finally, the vector representation of the current query qv is
a weighted summation of all words:

qv =
x∑

i=1

(αw
i + TF -IDFei)ei. (3)

The query or document represented in this way contains
word-level re-finding information, which can promote the
identification of the re-finding behavior in the following.

3.1.2 Query Memory
Above we used word memory to strengthen the influence
of key words, but sometimes the same words have different

meanings in different queries. We next identify re-finding
behavior from the query level for handling the query-based
re-finding in sentence-level. The word memory can most
directly and effectively reflect the user’s interested words,
while the query memory focuses more on the semantics of
the entire sentence. They complement each other, and jointly
carry out fine-grained modeling of user interests. Since that
user behavior under similar queries are valuable to make a
prediction, the main function of the query memory MQ is to
find out the historical queries that are related to the current
query. Specifically, in addition to build user profiles using
satisfied documents, we leverage the skipped documents to
model user interests in reverse. The basic idea is if a user
skipped a document before, it is more likely to skip it again
when encountering the same document. A satisfied click
usually refers to a click with more than 30s dwelling time or
the last click in a session [3, 9, 10]. And a skipped document
is defined as the unclicked document above a satisfied click.

Assume that there are nQ memory slots in MQ, i.e.
MQ = {mQ

1 , ...,m
Q
nQ
}. Each slot stores a query string, a

query vector and two average document vectors (satisfied
and skipped), i.e. mQ

i = {qsi , qvi , d+qi , d
−
qi}. Notice that the

query stored in each slot is different. TheWRITE operation
of query memory is defined as: there is a new interaction
{q,D} from u. We put the average vector d+q of satisfied
clicked documents and d−q of skipped documents into the
memory. If query q has been issued before, we only modify
the two average document vectors of corresponding slot:

d+qi(new)← GATE(d+q , d
+
qi(old))

d−qi(new)← GATE(d−q , d
−
qi(old))

(4)

where GATE(·) is a gate to control the proportion of new
information, GATE(a, b) = (1− zi) ∗ a+ zi ∗ b, and the gate

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 5

weight zi is set to 0.5 in our model. Otherwise, we put the
query string, the query vector and two average document
vectors together, i.e. {qs, qv, d+q , d−q }, into a new slot (or
replace the oldest one if there is no empty slot). Here we
keep the memory in the chronological order to maintain the
sequential information of historical interactions.

The READ operation starts when the user issues a
new query q, which is to learn the weight of each slot
in MQ based on the new query. Specifically, for covering
more potential re-finding behavior, we compute the weight
from the string level (lexical similarity) and the vector level
(semantic similarity). Together, they determine the influence
of each slot based on q. Formally, with respect to the query
string qs and the query vector qv , the weight αq

i of the ith
slot is defined as the combination of string level weight αqs

i

and vector level weight αqv

i :

αq
i = φ(αqs

i , α
qv

i). (5)

For string level weight, we choose ten common ways
of query change following previous work (”wordorder”,
”stemming”, etc.) [13, 14]. We believe they contribute differ-
ently in re-finding. To learn the influence of each types, we
devise a type memory MT to store the matching types and
their vector representation. Each representation is initialized
by zero and will be updated when the new query comes.
Formally, if the relation between the new query string qs

and a historic query string qsi belong to the jth type, the
new representation rj of the type is:

rj(new)← GATE(f(qv − qvi), rj(old)), (6)

where f(·) is to ensure that the value is the largest when the
two queries are the same, and gradually decreases as the
difference of them increases, defined as f(x) = e−|x|. Given
a new query q, we take out corresponding vectors according
to the relationship between the historical queries in MQ and
the new query. If a query pair does not match any query
change type, the relation vector is set to zero. We use Rqs

to represent the set of relation vectors based on qs, and the
string level weight αqs

i of slot mQ
i is learned according to its

relation vector rq
s

i :

αqs

i =
exp(φ(rq

s

i))∑n
j=1 exp(φ(rq

s

j))
, (7)

where the MLP φ(·) is to output a weight based on the
relation vector. We use the function softmax(ei) to represent

exp(ei)∑n
j=1 exp(ej)

for short in the following.
For vector level weight, with respect to the current new

query vector qv , we highlight the relevant slots based on the
topic similarity between query vectors. The weight αqv

i of
slot mQ

i is generated by the attention mechanism [32]:

αqv

i = softmax(φ(qv, qvi)). (8)

Now we have learned the weight of each slot, which
represents the contribution of each historical query to the
current query in re-finding. Finally, we take the vectors
from MQ according to the learned weight and get three
weighted sets: weighted historical query vector set Qq =
{αq

1q
v
1 , ...α

q
nQ
qvnQ
}, weighted satisfied document vector set

D+,q = {αq
1d

+
q1 , ...α

q
nQ
d+qnQ

}, weighted skipped document
vector set D−,q = {αq

1d
−
q1 , ...α

q
nQ
d−qnQ

}. And they act on
calculating the final probability in Section 3.3.

3.1.3 Document Memory
The document memory is used to analyze the user’s
query habits based on each candidate document. For the
document-based re-finding, we expect to focus on the
queries that retrieve the documents which are related to
the candidate document through the document memory
MD = {mD

1 , ...m
D
i , ...,m

D
nD
}. The method of constructing

it is similar to the query-based memory. Each memory slot
mD

i consists of a document URL, a document vector and an
average query vector, i.e. mD

i = {dsi , dvi , qdi
}. When a new

interaction {q,D} happens, the WRITE operation forms
document-query pairs with the satisfied documents in D
and the query i.e. {{d+1 , q}, {d

+
2 , q}, ...}. And then we put

each of them into the document memory MD like query
memory: modify the qi by GATE(·) if the document has
satisfied before, or use a new (the oldest) slot to store it.

When evaluating a document d, we learn the weight
αd
i of each slot based on d by READ operation. Due to

the limited type of URL change, we only consider two
types ”the same” and ”the same domain” of document
change to learn the string level weight. And the vector
level weight is also generated by attention mechanism,
αdv

i = softmax (φ (dv, dvi)). By combining two parts of
weight, we highlight user behaviors on relevant documents
and get two weighted sets: weighted document vector set
Dd = {αd

1d
v
1, ..., α

d
nD
dvnD
}, weighted average query vector

set Qd = {αd
1qd1 , ..., α

d
nD
qdnD

}. They will contribute to the
final probability along with the sets from the query memory.

3.2 Modeling Session-based Re-finding.
In a large number of search behaviors, sometimes users
do not get satisfied results by only one query. They often
issue a query at the beginning of a session and reformulate
it until getting a satisfied document [10]. We believe that
user behaviors in a session reflect a query intent. Intuitively,
the queries and click data in historical sessions are helpful
when the user shows the same query intent next time.
Therefore, we attempt to further analyze user re-finding
behavior from the session-level. Specifically, we divide the
query logs into different sessions, U = {S1, S2, ...}, and
construct an intent memory M I which contains nI slots to
store the historical behaviors over sessions. Each memory
slot mI

i contains a query intent vector kIi of a session and an
interested document vector vIi under the intent, denoted as
mI

i = {kIi , vIi }. The WRITE and READ operation of M I

will be introduced in the following.

3.2.1 Exploiting user historical intent with RNN
Assume that a user issues a series of queries {qi,1, qi,2, ...}
in the session Si, and each query corresponds to an average
satisfied document vector {di,1, di,2, ...}. In general, if the
current query cannot meet the user’s information needs,
he will submit the next query until the information needs
are met. So the latter query and the satisfied document in
a session can better reflect the user’s true intent. Inspired
by the great success of RNN in modeling sequential data,

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 6

we apply it to learn the representation of the session-based
intent and interest. We adopt GRU [33] as the basic cell in
our work. Two GRU layers are applied to model user query
intent from {qi,1, qi,2, ...} and user interested document
from {di,1, di,2, ...} in each session. The WRITE operation
of intent memory M I is defined as: when a new interaction
{q,D} happens, if it belongs to an existed session in the slot
mI

i , we update the memory slot for this session regarding
the query vector qv and average satisfied document vector
d+ as the inputs of GRU:

kIi (new)← GRU(kIi (old), q
v),

vIi (new)← GRU(vIi (old), d
+),

(9)

where GRU(·) is the GRU unit. The new state vector
kIi (new) can be calculated according to the inputs and
previous state vector kIi (old). If it belongs to a new session,
we put it in a new (the oldest) slot and the previous state
vector is initialized by zero vector.

3.2.2 Extracting session-based information
Now we have recorded the query intent and corresponding
interested document of each session in the intent memory,
which allows us to explore the user’s session-based re-
finding behavior. Based on the two types of re-finding be-
havior, theREAD operation of intent memory includes two
ways. For the query-based re-finding, we regard query in-
tent as the key and user interested document as the value in
M I . Given a new query q, to more accurately express its in-
tent, such as ambiguous queries, misspelled queries, etc., we
generate a refined query vector according to the weighted
historical query vector set Qq = {αq

1q
v
1 , ...α

q
nQ
qvnQ
} obtained

in Section 3.1.2. For capturing the evolution of relevant
queries over time in history, we also take a GRU layer to
represent the current state vector hqn. And then we map it
into the same dimension as the query vector by MLP to
represent the refined query q′:

q′ = φ(hqnQ
) = φ(GRU(hqnQ−1, α

q
nQ
qvnQ

)). (10)

We learn the attentive weight of each slot based on the query
vector qv and the refined query vector q′. We have:

αI,q
i = softmax(φ(kIi , [q

v, q′])). (11)

Finally, we generate a set V q = {αI,q
1 vI1 , ..., α

I,q
nI
vInI
} by

reading interested documents with query-aware weights to
represent a probability distribution of different interests.

For the document-based re-finding, we exchange the
roles of the two parts in M I to evaluate what query intent
the candidate document is likely to belong to, i.e. the key is
interested document and the value is query intent. Since that
URL is based on certain rules and changes less, we simply
get the refined document vector by summing the elements
of weighted document vector set Dd:

d′ =

n∑
i=1

αd
i d

v
i . (12)

And the weights on query intents based on dv and d′ is:

αI,d
i = softmax(φ(vIi , [d

v, d′])). (13)

The probability distribution of historical intents based on d
is denoted as the set Kd = {αI,d

1 kI1 , ..., α
I,d
nI
kInI
}. These two

sets from intent memory are essential in the final probability.

3.3 Re-ranking the Results

In this section, we compute the probability of each part in
Eq. (1) using the personalized information we got above.

(1) For p(d|Uq), we make use of the information which
is collected for the query-based re-finding behavior. The no-
tation Uq means the user interactions related to q, including
(a) the weighted satisfied and skipped document vector sets
D+,q and D−,q obtained in Section 3.1.2. (b) the estimated
session-based interested documents V q from the Section 3.2.
In order to measure the positive and negative effects of
historical behaviors, we calculate the probability of the two
parts separately and use MLP to combine them, by:

p(d|Uq) = φ(p(d|U+,q), p(d|U−,q)). (14)

They can be measured by the matching the candidate docu-
ments and user personalized information. For a wider range
of matches, we put d and the d′ together as the target:

p(d|U+,q) = Fk([d, d
′], [D+,q, V q]),

p(d|U−,q) = Fk([d, d
′], D−,q),

(15)

where Fk is the matching function which follows the idea
of the previous model K-NRM [34]. It devises k kernels to
cover different degrees of matching. And the number of
kernel k is set to 11 in our model. Formally, after projecting
all the vectors into the same semantic space, we form two
translation matrices M+

ij and M−ij by cosine similarity. The
matching function combines the scores of k kernels with
MLP (using M+

ij as an example):

Fk(M
+
ij) = φ(f1(M

+
ij), ..., fo(M

+
ij), , ..., fk(M

+
ij)),

fo(M
+
ij) =

∑
i

log

∑
j

exp

(
−
(M+

ij − µo)
2

2σ2
o

) ,
(16)

where µo is evenly distributed between -1 and 1 according
to k, and σo is set to 0.1 in our model. This approach gives
us an opportunity to control the degree of matching by
adjusting the kernel.

(2) For p(q|Ud), which represents the probability of the
document-based re-finding. And the notation Ud includes
the information associated with d. (a) the weighted query
vector sets Qd in Section 3.1.3. (b) the estimated session-
based query intents Kd in Section 3.2. Imitating the match-
ing method of last part, we are able to get the probability by
matching the personalized information with the new query
q and the refined query q′:

p(q|Ud) = Fk([q, q
′], [Qd,Kd]). (17)

(3) For p(q|d), following previous work [3], we extract
lots of features for every document, including original posi-
tion, click entropy, temporal weights and topical features.
What’s more, we add several additional features of the
skipped document following our previous idea. The proba-
bility is computed by feeding these features fq,d into MLP
with tanh(·) as the activation function:

p(q|d) = φ(fq,d). (18)

Finally, a personalized ranking list is generated by re-
ranking the original search results according to the final
probability p(d|q, U). We train our model in a pairwise way

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 7

based on the LambdaRank algorithm. The document pairs
are formed by regarding the satisfied documents as positive
samples and the skipped documents as negative samples.
The distance disij of the pair di and dj is computed by
|p(di|q, U) − p(dj |q, U)| with the normalization of logistic
function. We choose weighted cross entropy between the
true distance distij and the predicted distance dispij as loss
function, and we have:

loss = −|λij |
(
distij log(dis

p
ij) + (1− distij)log(1− dis

p
ij)
)
,

(19)
where the weight λij is the change of ranking quality after
swapping the pair di and dj .

3.4 Optimizing Reading Operation of MN
The READ operation of each memory we proposed above
is the single-layer attention version, which has low uti-
lization of the memory networks. Inspired by [16, 28], we
extend our model to multi-layer reading to further exploit
the information in each memory. This strategy can enhance
the interaction between different memory slots, so as to
more effectively use the information in memory. We design
two optimization strategies shown in Figure 2 to reuse the
information in memory.

Multi-hop Attention. The first optimized READ op-
eration is implemented by multi-hop attention. Each hop
searches for similar information from the memory according
to the input, and aggregates the information into a state
vector with attentive weights, which will be used as the
input of the next hop together with the original input. As
the number of iterations increases, the information in the
memory networks will be fully mined, and the final output
will better reflect the user’s personalized preferences.

We update the READ operation with multi-hop at-
tention for the word memory, query memory, document
memory, and intent memory. Concretely, for a memory with
n slots, given the input vector h, the attentive weights of
the ith hop {αi

1, ..., α
i
n} can be learned by Eq. 3.1.2 based on

the input vector hi−1. Next we construct user’s preference
representation pi with weighted summation of values in
each memory slot:

pi =
n∑

j=1

αi
jvj , (20)

where vj is the value of jth memory slot. In order to prevent
the user preferences we collected from deviating from the
original information need as the number of hops increases,
we combine both of them as input for the next hop with a
gate unit. We have,

hi = z ∗ hi−1 + (1− z) ∗ pi, (21)

where z is the gate weight and it is set to 0.5 in our exper-
iments. The input h0 is the user information need fed into
the memory. More hops can help extract more potentially
relevant information, but this will ruin the identification
of obvious re-finding behaviors. Therefore, we propose an-
other reading strategy with transformer.

Multi-layer Transformer. The vanilla attention mecha-
nism sometimes cannot guarantee the stability of the effect
during multi-hop reading. Transformer [35], a structure

InputMemory

···

Multi-head

Self-attention

Dropout

Add & Norm

Position-wise

Feed-forward

Dropout

Add & Norm

Transformer

𝑚1 𝑚2 𝑚3 𝑚𝑛

Transformer (× 𝑁)Transformer (× 𝑁)

Output

(2) Multi-layer transformer

Input

memory

m2

m𝑛

···
x

m1

m2

m𝑛

···
x ···

m1

m2

m𝑛

···

Hop 1 Hop 2 Hop h

𝑝1 𝑝2

(1) Multi-hop attention

m2

m1

Figure 2. The structure of optimized READ operation.

based on self-attention mechanism, shows stability in multi-
layer structure. Therefore, we adopt the multi-layer trans-
former to implement the optimized reading operation.

Specifically, for a memory with n slots, the values of all
memory slots are denoted as V = {v1, ..., vn}. Given an
input vector h, we concatenate the values of the memory
and the input vector, and apply a multi-layer transformer to
mine the user preference. We have:

o = Transformerlast([V, h]) (22)

where o is the output of the model and represents the
aggregation of information in memory based on the input
vector. The function Transformerlast(·) is implemented by
N -layer transformer encoder and takes the output of the
last position. The transformer encoder consists of a Multi-
head Self-attention (MS) layer and a Position-wise Feed-
forward (PF) layer. To keep valid training as the network
goes deeper, residual connection is applied to each layer.
Each transformer layer is defined as:

Transformer(q) = LN(Mq + D(PF(Mq))),

Mq = LN(q + D(MS(q))),
(23)

where LN(·) is layer normalization to stabilize the output.
And D(·) is a dropout layer with 0.1 probability in our
settings. The implementation details of the function MS(·)
and PF (·) can refer to the previous work [35]. With the
multi-layer transformer, the information between different
memory slots can better interact to represent the user pref-
erence, and the advantages of memory network can be fully
displayed to enhance the re-finding behavior.

3.5 Discussion

In summary, we propose a method to enhance the re-finding
behavior in personalized search with memory networks. We
make a brief discussion about usability of the model below.

Model compression. Our model contains many external
memories to store the user’s behavior. Due to the limited
memory space in the real scene, we compress the model to
enhance its usability. We use a fixed size sliding window
to control the size of the memory, and only keep the user’s
recent behavior. The size of the window can be adjusted

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 8

Table 2
Basic statistics of the datasets.

Type AOL dataset Commercial dataset

#days 91 58
#users 110,439 5,998
#queries 736,454 738,731
#sessions 279,930 276,047
Average query length 2.87 3.25
Average #click per query 1.11 0.46

according to the physical needs. The larger the window size,
the stronger the storage capacity of the model.

Deployment on edge devices. Edge devices often have
limited computing and storage capacity, which poses a
challenge for the deployment of our model. In addition
to the model compression, the construction of all external
memories can be done offline and updated regularly. More-
over, the search engine can collect the user’s behavior first,
and after the accumulation reaches a certain number, upload
them to the server to update the user’s memories.

4 EXPERIMENTS
4.1 Dataset
We experiment with query logs of a commercial search
engine and AOL. The statistics are shown in Table 2.

Commercial dataset includes two month of non-
personalized user click-through data in 2013. Each piece of
data contains user anonymous ID, query string, query time,
top URLs returned by the search engine, and click dwelling
time. To ensure the validity of the data, we remove the users
whose active time is less than 6 sessions (to make sure we
have enough data to build user model) and the documents
that cannot be accessed. To identify a session, we use the
common approach of demarcating session boundaries by 30
minutes of user inactivity [36].

AOL dataset contains three month of data, which only
collects the clicked documents. Following [37], the candidate
documents are selected from the top documents ranked by
BM25 algorithm [38]. Different from commercial dataset,
following [39], the session boundaries are set with respect
to the semantic similarity between two consecutive queries,
and we sample 5 candidate documents per query for train-
ing and validation, 50 candidates to test the model. The
document titles are regarded as the content for matching.

Since that personalized search is based on user historical
interactions, we regard the first three quarters of data as his-
torical information to build a basic user model, and the last
quarter of data is divided into training set, validation set,
and test set in a 4:1:1 ratio. Since the query time distribution
of different users is uneven, the division is based on the
number of sessions of each user during this period, so as to
ensure that each part has at least one session data. For the
two types of vector representation as we stated in Section
3.1, we train a word vector model with word2vec [40] for the
method based on word embedding, and utilize node2vec
[41] to learn the representations of graph embedding.

4.2 Baselines
We regard the original ranking as a basic baseline and con-
sider traditional personalized methods based on re-finding
and deep learning methods for performance comparison.

P-Click [2]: This method counts the click number on the
same document under the same query in history, and gen-
erates personalized results by fusing the original ranking.

URP [13]: It extracts three types of feature (query change,
personalized and shared) to identify the re-finding and uses
it to predict user behaviors for personalized search.

SLTB [3]: It summarizes 102 features, including click-
based features, topic-based features, short and long-term
features, time decay etc., to train a ranking model by the
LambdaMART algorithm.

HRNN [10]: This method models user short-term and
long-term interests and highlight relevant interests dynam-
ically using hierarchical RNN with query-aware attention.
It is the first time to leverage sequential information with a
deep learning framework.

PSGAN [12]: This is a personalized framework for deal-
ing with the noisy click data based on generative adversarial
network. We take the discriminator of the query generation
based model as our baseline model, which is the state-of-
the-art one among four variants of PSGAN.

4.3 Our Models

RPMN (Re-finding Plus by Memory Networks): It is our
model proposed in Section 3 with vanilla attention reading
operation. To validate the effectiveness of each component,
we experiment with different combinations of the compo-
nents. Specifically, we experiment with:

RPMN-WM: Word memory is removed and we only use
the TF-IDF weight to aggregate the words.

RPMN-QM: Query memory is disabled and we assign
the same weight to all historical queries.

RPMN-DM: This method eliminates the document
memory and treats the historical documents equally.

RPMN-IM: We remove the intent memory which is to
model session-based re-finding behavior from the model.

RPMN-A: The read operation is replaced by multi-hop
attention referring to Section 3.4.

RPMN-T: The read operation is replaced by multi-layer
transformer referring to Section 3.4.

We experiment with multiple sets of parameters, in-
cluding GRU hidden state size in {200,400, 600}, the
number of MLP hidden units in {64, 128,256, 512}, trans-
former hidden state size in {128, 256,512}, the number
of heads in self-attention in {4,8, 16}, word embedding
size in 300, 1000}, graph embedding size in {300, 1000},
the number of kernel in {5, 7, 9,11, 13}, learning rates in
{10−2,10−3, 10−4}. Considering the performance of the
model, training time, and memory usage, we choose the
parameters in bold to train the model. In more detail about
node2vec which we mentioned above, we regard queries,
documents, words as the nodes of graph to learn the graph
embedding. There are three types of edges: (1) two adjacent
queries in the same session; (2) the document and the
query to which it belongs; (3) the word and the query (or
document) to which it belongs. The parameters p and q of
node2vec are both set to 1.0 in our experiment. Due to the
use of a large number of user history logs, there are plenty of
parameters to learn, which takes about 12 hours per epoch
with 1 GPU. After about two epochs of training, the model
will reach convergence.

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 9

Table 3
Overall performances of models on commercial dataset. ”†” indicates
the model outperforms all baselines significantly with paired t-test at p

< 0.05 level. The best results are shown in bold.

Model MAP MRR A.Clk. #Better #Worse P-Imp.

Ori. .7399 .7506 2.211 - - -
P-Click .7509 .7634 2.189 3214 28 .0611
URP .7742 .7802 2.070. 4631 50 .0884
SLTB .7921 .7998 1.960 6224 81 .1170
HRNN .8065 .8191 1.902 14608 2067 .2405
PSGAN .8135 .8234 1.815 14675 1694 .2489
RPMN-WM .8239† .8343† 1.746† 14686 872 .2650†

RPMN-QM .8195† .8308† 1.763† 13621 630 .2493
RPMN-DM .8207† .8312† 1.756† 13580 603 .2490
RPMN-IM .8226† .8322† 1.749† 14372 800 .2584†

RPMN .8238† .8342† 1.745† 14735 890 .2656†

RPMN-A .8249† .8351† 1.735† 15082 1019 .2697†

RPMN-T .8260† .8364† 1.730† 15372 1059 .2745†

Table 4
Overall performances of models on AOL dataset.

Model MAP MRR A.Clk. #Better #Worse P-Imp.

Ori. .2501 .2583 17.152 - - -
P-Click .4224 .4298 16.526 148221 455 .1747
URP .4652 .4744 15.132 228534 966 .2691
SLTB .5072 .5194 13.926 310307 1480 .3652
HRNN .5423 .5545 10.552 537758 8146 .6262
PSGAN .5480 .5600 10.267 542403 7825 .6342
RPMN-WM .5926† .6049† 8.603† 651439 10892 .6502
RPMN-QM .5834† .5952† 8.782† 634664 9091 .6350
RPMN-DM .5859† .5973† 8.743† 634456 8332 .6383
RPMN-IM .5902† .6022† 8.628† 640416 10248 .6488†

RPMN .5945† .6072† 8.556† 654348 11313 .6522†

RPMN-A .5968† .6097† 8.537† 660265 11442 .6586†

RPMN-T .5995† .6135† 8.498† 664554 11890 .6625†

4.4 Evaluation Metrics

Based on the assumption that satisfied clicked documents
are relevant and others are irrelevant, we choose three
common evaluation metrics to measure the quality of the
ranking list, i.e. Mean Average Precise (MAP), Mean Re-
ciprocal Rank (MRR), and average click position (A.Clk.).
What’s more, due to the influence of the original ranking
position bias, the reason why a document is not clicked may
be that the position is too low. Based on the consideration
that a satisfied clicked document is more relevant than
the skipped documents and the next unclicked document,
following [12], we construct the inverse document pairs by
them and take three metrics #Better, #Worse, and P-Imp. to
evaluate the results. The metric #Better shows the number
of inverse document pairs on which the model ranks the
satisfied clicked document higher than the skipped docu-
ment. The metric #Worse counts the case that next unclicked
document is ranked higher. The metric P-Imp. is defined
as P-Imp= #Better-#Worse

#Pairs , where #Pairs is the total number of
inverse document pairs.

4.5 Overall Results and Analysis

We evaluate the results of the different methods on the test
set. The overall results are shown in Table 3 and 4. We find:

(1) Personalized baselines vs. original ranking. All per-
sonalized strategies outperform the original ranking gener-

ated by search engine on both datasets. The result of P-Click
shows that just using the exact matching based re-finding
behavior is effective for personalization. URP analyzes a
wider range of re-findings and gets a better performance.
Their results prove the necessity of our work to model the
re-finding behavior in a more holistic way. SLTB integrates
all kinds of features and generates a ranking by the learning
to rank method, which is more effective than traditional
re-finding based features. HRNN and PSGAN prove the
effectiveness of deep learning on building user profiles
dynamically for personalization.

(2) Our methods vs. baselines. Our proposed methods
outperform baseline models in all evaluation metrics on
both datasets. Compared with the best method PSGAN in
baseline models, our models have significant improvements
with paired t-test at p < 0.05 level on MAP. Specifically,
the basic model RPMN has increased by 1.40% on MAP on
commercial dataset, while this percentage increases to 8.91%
on AOL dataset. The reason is that commercial dataset has a
high-quality original ranking, which more tests the ability
of personalizing the results. But the original ranking of
AOL dataset is generated by BM25 algorithm, which still
has great upside on navigational queries. As can be seen
from the reduction of #Worse on commercial dataset, our
personalized methods have a lower risk of mistakes when
the quality of adhoc ranking is high.

(3) RPMN vs. other methods we designed. The complete
model outperforms other models that lack a memory on
both datasets. Specifically, removing the query memory
causes a significant decline, whose impact is greater than
others. This indicates the query-based re-finding is common
and it is feasible to capture user interested documents by
analyzing the behaviors under similar queries. The model
RPMN-DM reduces most on the metric #Better, showing
that more pairs can be improved based on the user’s query
habits for finding a specific document by the document
memory. It can be seen that eliminating the intent memory
and the word memory have less influence on the model.
The intent memory is used to discover re-finding behavior
that is more implicit, and the word memory is focused on
long queries which have unnecessary words. The optimized
model RPMN-A and RPMN-T shows better performance
and indicates the effectiveness of further utilizing informa-
tion in memories.

In summary, the overall results prove that memory net-
works are helpful for enhancing the re-finding behavior
based on fine-grained personalized information, and im-
prove the personalized results credibly. To further analyze
what kind of queries our model improves on, we test the
performance of our model on the different query sets in the
remaining parts of this section.

4.6 Results on Different Query Sets

To measure the main contribution of our model, we divide
all test queries into different sets according to the type and
test the effect of the model. We tried two ways of dividing
in the following.

Informational queries vs. navigational queries. Previ-
ous studies have shown that user queries can be divided
into navigation queries and informational queries according

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 10

0-1 ≥1
Click Entropy

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
ΔM

A
P

SLTB
HRNN
PSGAN

RPMN-QM
RPMN

(a) Commercial dataset

0-1 ≥1
Click Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ΔM
A

P

SLTB
HRNN
PSGAN

RPMN-QM
RPMN

(b) AOL dataset

Figure 3. The results on queries with different click entropies

to the intent [1, 2, 10]. The former refers to those queries
whose purpose is clear and all users prefer the same doc-
ument. The latter are generally those that are used to get
various information or ambiguous queries. We divide the
queries with the cutoff of click entropy at 1.0, which is an
indicator to measure the potential for personalization. We
choose three baseline models STLB, HRNN, PSGAN and
two our models RPMN-QM, RPMN to compare. Finally, we
compute their MAP improvements on two query sets.

As shown in Figure 3, our models outperform the
baselines on both query sets. For commercial dataset, all
the personalized methods contribute more on informational
queries (with larger click entropy) than navigational queries
(with lower click entropy) on commercial dataset. Specif-
ically, compared to the best baseline model PSGAN, our
complete model RPMN has little improvement on naviga-
tional queries, but the performance on informational queries
is much better. This shows RPMN is good at modeling
fine-grained user personalized information to tailor the
ranking. Comparing RPMN with RPMN-QM, we find the
query memory contributes more on informational queries.
It confirms the query-based re-finding usually happens for
collecting information and it could be enhanced by our
memory networks. For AOL dataset, we observe opposite
results that the improvement on navigational queries is
more obvious. A possible reason is that the original ranking
of commercial dataset has performed well in navigational
queries, while AOL dataset has a lower baseline.

Repeated queries vs. new queries. In personalized
search, user behaviors under relevant queries in history can
provide essential information for building user models. For
proving the effectiveness of our model on enhancing re-
finding behavior, we categorize the queries into two sets:
repeated queries (the queries the current user has issued
before) and new queries (others), and test the performance
on them with the same model settings as above.

From Figure 4, we find that the results on two datasets
are similar. All personalized models have improved search
quality on both query sets, while the improvement on the
repeat queries is much larger than that on the new queries.
Compared to the best baseline model PSGAN, our model
RPMN has a better performance on both parts and the
improvement on new queries is more obvious. Intuitively,
improving results on new queries is a more difficult task
because of the lack of useful personalized information.
Our model not only enhances the re-finding behavior from
repeated queries, but also improves the potential re-finding
in semantic from new queries. In addition, the results of
RPMN-QM indicates removing query memory causes more

New queries Repeated queries
Query Category

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ΔM
A

P

SLTB
HRNN
PSGAN

RPMN-QM
RPMN

(a) Commercial dataset

New queries Repeated queries
Query Category

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ΔM
A

P

SLTB
HRNN
PSGAN

RPMN-QM
RPMN

(b) AOL dataset

Figure 4. The results on repeat queries and new queries

1 2 3 4 5
Layers

0.818

0.820

0.822

0.824

0.826

0.828

0.830

M
AP

Vanilla attention
Transformer

(a) Commercial dataset
1 2 3 4 5

Layers

0.590

0.592

0.594

0.596

0.598

0.600

0.602

M
AP

Vanilla attention
Transformer

(b) AOL dataset

Figure 5. The performance of multi-layer reading operation

decline on repeated queries, which proves the effectiveness
of this memory to highlight the relevant queries.

4.7 Effect of Reading with Multiple layers
Reading the memory with different hops makes different
impact to build the user model. To explore the best reading
strategy, we try different layers of transformer and observe
the effect of the model on the two datasets separately. In
addition, we choose vanilla attention to read the memory
with multiple hops as a comparison. Based on the complete
model RPMN, we set the reading hops from 1 to 5, and
observe the changes of MAP.

The results are shown in Figure 5. For vanilla attention,
we find that on both datasets, two-layer reading is the best
method, and more layers cannot further improve the MAP.
When the number of layers is greater than three, the results
are not even as good as the single-layer reading. A possible
reason is that as the network structure deepens, the impact
of obvious re-finding behaviors will be weakened. Multi-
hop reading with transformer is a better strategy obviously.
When only one layer transformer is used, the model effect
is closest to vanilla attention. As the number of layers
increases, the ranking quality is higher. This indicates the
transformer is able to maintain the stability of the model
when the network goes deeper.

4.8 Analysis On Interpretability of Our Model
Compared to previous personalization approaches based on
deep learning, our model is more interpretable owing to the
ability of memory networks to store valuable information.
Recall that we highlight relevant queries by αq and docu-
ments by αd in Section 3.1, and measure the influence of
session-based historical intent by αI,q and αI,d. For simplic-
ity, we present an example to analyze the interpretability of
the model from the query. The analysis from the document
can be analogized to this.

As shown in Figure 6, given a new query ”calculating
speed labs”, by looking at the content of the slot with the

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 11

Query Memory

Intent Memory

𝒂𝒓𝒈𝒎𝒂𝒙(𝜶𝒒)

http://www.middleschoolscience.com/class3.htmcalculating speed labs

𝒂𝒓𝒈𝒎𝒂𝒙(𝜶𝑰,𝒒)
Session #20

acceleration middle school

acceleration lab and gravity

heart rate lab middle school

acceleration lab

http://www.doc-txt.com/Heart-Rate-Lab-Middle-School.pdf

http://www.science-class.net/Physics/force_motion.htm

http://printfu.org/acceleration+labs+for+middle+school

Query #153

acceleration lab http://www.middleschoolscience.com/walk.html

𝑞 𝑑

http://www.middleschoolscience.com/walk.html

Figure 6. The case study for interpretability of RPMN

highest weight in query memory and intent memory, we can
get the following explanation: the user interactions under
the 153th query ”acceleration lab” is the most informative,
and user intent in the 20th session is highly similar to the
current query intent. According to the satisfied documents
under these queries, the candidate document has a high
probability of being clicked. Similarly, from the angle of
document, we can find out the most valuable historical
satisfied document by document memory and infer the
possible intent by intent memory. This example indicates
our model handles the potential re-finding in semantic and
external memories can explain the personalized results.

4.9 Analysis On Challenges from Data
In this part we will analyze how our model overcomes the
challenges from the data: data sparsity and data noise.

Data sparsity. For most users on the Internet, they have
very few historical query logs and it is difficult to apply
personalized strategies to them. Therefore, it is critical to
make full use of the limited historical logs to model user
interests. Our model takes advantage of the memory net-
work on storing information, and combines deep learning to
fully excavate the fine-grained interests reflected by users’
historical behavior. The results on new queries that lack
relevant history show that our model can overcome the data
sparsity problem to a certain extent.

Data noise. It is common for users to submit queries that
contain noise, such as spelling errors, incomplete input, etc.
In order to more realistically simulate user search behavior,
we retain these noisy data. We believe these noise data also
contains the personalized information. For example, a user
often misspells some certain words. When the misspelled
words are encountered for the second time, the model can
identify it and understand the user’s query intent.

5 CONCLUSION

In this paper, we made use of external memories to enhance
the re-finding behavior that is difficult to identify based on
the fine-grained user model. Firstly, we construct a word
memory to assign the re-finding weight to each word and
generate vector representations. And then, we designed
the memories for queries and documents to cover two
types of re-finding behavior. In addition, endowed with the
benefit from RNN on modeling sequential data, we further
constructed an intent memory to extend the recognition of
re-finding to session level. Finally, By matching the user
information needs with the estimated user interests, we

calculated the user’s click probability on each candidate
document, thereby personalizing the results. The READ
operation of memory networks can be optimized with
multiple hops to strengthen the use of memory networks.
Experimental results confirmed the effectiveness and inter-
pretability of our proposed model, and showed the necessity
of each memory and optimization strategy.

ACKNOWLEDGMENTS

Zhicheng Dou is the corresponding author. This work was
supported by National Natural Science Foundation of China
No. 61872370, Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098, and the Fundamental Re-
search Funds for the Central Universities, and the Research
Funds of Renmin University of China No. 2112018391.

REFERENCES

[1] J. Teevan, S. T. Dumais, and D. J. Liebling, “To per-
sonalize or not to personalize: modeling queries with
variation in user intent,” in SIGIR’08. ACM, 2008, pp.
163–170.

[2] Z. Dou, R. Song, and J.-R. Wen, “A large-scale evalua-
tion and analysis of personalized search strategies,” in
WWW’2007. ACM, 2007, pp. 581–590.

[3] P. N. Bennett, R. W. White, W. Chu, S. T. Dumais,
P. Bailey, F. Borisyuk, and X. Cui, “Modeling the impact
of short-and long-term behavior on search personaliza-
tion,” in SIGIR’12. ACM, 2012, pp. 185–194.

[4] F. Cai, S. Liang, and M. De Rijke, “Personalized docu-
ment re-ranking based on bayesian probabilistic matrix
factorization,” in SIGIR’14. ACM, 2014, pp. 835–838.

[5] Y. Song, H. Wang, and X. He, “Adapting deep ranknet
for personalized search,” in WSDM’2014. ACM, 2014,
pp. 83–92.

[6] J. Teevan, D. J. Liebling, and G. Ravichandran Geetha,
“Understanding and predicting personal navigation,”
in WSDM’2011. ACM, 2011, pp. 85–94.

[7] M. Harvey, F. Crestani, and M. J. Carman, “Build-
ing user profiles from topic models for personalised
search,” in CIKM’13. ACM, 2013, pp. 2309–2314.

[8] T. Vu, D. Song, A. Willis, S. N. Tran, and J. Li, “Im-
proving search personalisation with dynamic group
formation,” in SIGIR’14, 2014, pp. 951–954.

[9] T. Vu, A. Willis, S. N. Tran, and D. Song, “Temporal
latent topic user profiles for search personalisation,” in
ECIR’2015. Springer, 2015, pp. 605–616.

[10] S. Ge, Z. Dou, Z. Jiang, J.-Y. Nie, and J.-R. Wen, “Per-
sonalizing search results using hierarchical rnn with
query-aware attention,” in CIKM‘18. ACM, 2018, pp.
347–356.

[11] X. Li, C. Guo, W. Chu, Y.-Y. Wang, and J. Shavlik, “Deep
learning powered in-session contextual ranking using
clickthrough data,” in NIPS’2014, 2014.

[12] S. Lu, Z. Dou, X. Jun, J.-Y. Nie, and J.-R. Wen, “Psgan:
A minimax game for personalized search with limited
and noisy click data,” in SIGIR’19, 2019, pp. 555–564.

[13] S. K. Tyler, J. Wang, and Y. Zhang, “Utilizing re-finding
for personalized information retrieval,” in CIKM’10.
ACM, 2010, pp. 1469–1472.

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3126066, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 12

[14] J. Teevan, E. Adar, R. Jones, and M. A. Potts, “Infor-
mation re-retrieval: repeat queries in yahoo’s logs,” in
SIGIR’07. ACM, 2007, pp. 151–158.

[15] J. Weston, S. Chopra, and A. Bordes, “Memory net-
works,” arXiv preprint arXiv:1410.3916, 2014.

[16] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bor-
des, and J. Weston, “Key-value memory networks
for directly reading documents,” arXiv preprint
arXiv:1606.03126, 2016.

[17] D. Elsweiler and I. Ruthven, “Towards task-based per-
sonal information management evaluations,” in SI-
GIR’07. ACM, 2007, pp. 23–30.

[18] Y. Zhou, Z. Dou, and J.-R. Wen, “Enhancing re-finding
behavior with external memories for personalized
search,” in WSDM’20, 2020, pp. 789–797.

[19] P. N. Bennett, K. Svore, and S. T. Dumais,
“Classification-enhanced ranking,” in WWW’10.
ACM, 2010, pp. 111–120.

[20] M. J. Carman, F. Crestani, M. Harvey, and M. Baillie,
“Towards query log based personalization using topic
models,” in CIKM’10, 2010, pp. 1849–1852.

[21] N. Matthijs and F. Radlinski, “Personalizing web search
using long term browsing history,” in WSDM’11.
ACM, 2011, pp. 25–34.

[22] T. Vu, D. Q. Nguyen, M. Johnson, D. Song, and
A. Willis, “Search personalization with embeddings,”
in ECIR’2017. Springer, 2017, pp. 598–604.

[23] R. W. White, W. Chu, A. Hassan, X. He, Y. Song, and
H. Wang, “Enhancing personalized search by mining
and modeling task behavior,” in WWW’2013. ACM,
2013, pp. 1411–1420.

[24] M. Volkovs, “Context models for web search personal-
ization,” arXiv preprint arXiv:1502.00527, 2015.

[25] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Ranking,
boosting, and model adaptation. tecnical report,” MSR-
TR-2008-109, Tech. Rep., 2008.

[26] S. K. Tyler and J. Teevan, “Large scale query log analy-
sis of re-finding,” in WSDM’10. ACM, 2010, pp. 191–
200.

[27] A. Kotov, P. N. Bennett, R. W. White, S. T. Dumais,
and J. Teevan, “Modeling and analysis of cross-session
search tasks,” in SIGIR’11. ACM, 2011, pp. 5–14.

[28] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end
memory networks,” in Advances in neural information
processing systems, 2015, pp. 2440–2448.

[29] M. Henaff, J. Weston, A. Szlam, A. Bordes, and Y. Le-
Cun, “Tracking the world state with recurrent entity
networks,” arXiv preprint arXiv:1612.03969, 2016.

[30] S. Chandar, S. Ahn, H. Larochelle, P. Vincent,
G. Tesauro, and Y. Bengio, “Hierarchical memory net-
works,” arXiv preprint arXiv:1605.07427, 2016.

[31] F. Liu and J. Perez, “Gated end-to-end memory net-
works,” in EACL’17, 2017, pp. 1–10.

[32] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[33] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning
phrase representations using RNN encoder-decoder for
statistical machine translation,” in EMNLP’2014, 2014,
pp. 1724–1734.

[34] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power, “End-
to-end neural ad-hoc ranking with kernel pooling,” in
SIGIR’17. ACM, 2017, pp. 55–64.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural infor-
mation processing systems, 2017, pp. 5998–6008.

[36] R. W. White and S. M. Drucker, “Investigating behav-
ioral variability in web search,” in WWW’07. ACM,
2007, pp. 21–30.

[37] W. U. Ahmad, K. Chang, and H. Wang, “Multi-task
learning for document ranking and query suggestion,”
in ICLR (Poster), 2018.

[38] S. Robertson, H. Zaragoza et al., “The probabilistic
relevance framework: Bm25 and beyond,” Foundations
and Trends® in Information Retrieval, vol. 3, no. 4, pp.
333–389, 2009.

[39] W. U. Ahmad, K.-W. Chang, and H. Wang, “Context
attentive document ranking and query suggestion,”
arXiv preprint arXiv:1906.02329, 2019.

[40] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting
similarities among languages for machine translation,”
arXiv preprint arXiv:1309.4168, 2013.

[41] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in SIGKDD’16. ACM, 2016,
pp. 855–864.

Yujia Zhou received the BE degree in computer
science and technology from Renmin University
of China, in 2019. And he is studying for PhD in
the School of Information, Renmin University of
China. His research interests include information
retrieval, natural language processing, big data
management, and data mining.

Zhicheng Dou received the BS and PhD de-
grees in computer science and technology from
Nankai University, in 2003 and 2008, respec-
tively. He is an associate professor in the School
of Information, Renmin University of China. He
worked at Microsoft Research as a researcher
from July 2008 to September 2014. His research
interests include information retrieval, data min-
ing, and big data analytics. He is a member of
the IEEE.

Ji-Rong Wen received the BS and MS degrees
from the Renmin University of China, and the
PhD degree from the Chinese Academy of Sci-
ence, in 1999. He is a professor at the Renmin
University of China. He was a senior researcher
and research manager with Microsoft Research
from 2000 to 2014. His main research interests
include web data management, information re-
trieval (especially web IR), and data mining. He
is a senior member of the IEEE.

Authorized licensed use limited to: Renmin University. Downloaded on February 14,2022 at 09:51:51 UTC from IEEE Xplore. Restrictions apply.

