Personalizing Search Results Using Hierarchical RNN
with Query-aware Attention

Songwei Ge!l?, Zhicheng Dou?3, Zhengbao Jiang!?, Jian-Yun Nie’, and Ji-Rong Wen!-%4
1School of Information, Renmin University of China, SDIRO, Université de Montréal
2Beijing Key Laboratory of Big Data Management and Analysis Methods
3National Engineering Laboratory of Big Data System Software (Beijing Institute of Technology)
*Key Laboratory of Data Engineering and Knowledge Engineering, MOE
gesongwei666@gmail.com,dou@ruc.edu.cn,rucjzb@163.com,nie@iro.umontreal.ca,jirong. wen@gmail.com

ABSTRACT

Search results personalization has become an effective way to im-
prove the quality of search engines. Previous studies extracted
information such as past clicks, user topical interests, query click
entropy and so on to tailor the original ranking. However, few
studies have taken into account the sequential information under-
lying previous queries and sessions. Intuitively, the order of issued
queries is important in inferring the real user interests. And more
recent sessions should provide more reliable personal signals than
older sessions. In addition, the previous search history and user
behaviors should influence the personalization of the current query
depending on their relatedness. To implement these intuitions, in
this paper we employ a hierarchical recurrent neural network to
exploit such sequential information and automatically generate
user profile from historical data. We propose a query-aware atten-
tion model to generate a dynamic user profile based on the input
query. Significant improvement is observed in the experiment with
data from a commercial search engine when compared with several
traditional personalization models. Our analysis reveals that the
attention model is able to attribute higher weights to more related
past sessions after fine training.

KEYWORDS

search results personalization; hierarchical recurrent neural net-
work; query-aware attention

ACM Reference Format:

Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
2018. Personalizing Search Results Using Hierarchical RNN with Query-aware
Attention. In The 27th ACM International Conference on Information and
Knowledge Management (CIKM’18), October 22-26, 2018, Torino, Italy. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3269206.3271728

1 INTRODUCTION

Users come to search engine with specific intents, but the queries
they issue often fail to express accurate meanings. It is often the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM 18, October 22-26, 2018, Torino, Italy

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3271728

case that users issue the same query to express different search
intents. Therefore, returning the same results to all users is not
the best strategy for a search engine. Personalization potentially
solves this problem: by appropriately modeling user interest profiles,
personalized search is able to alleviate the ambiguity problem by
providing more precise results to individual users.

Personalizing search results to particular users based on their
profiles has been a hot field in both academia [4, 6, 32, 37] and indus-
try [15] for a long time. Among these studies, many personalization
methods utilized click-through data to generate user profiles, since
large-scale query logs contain strong indications on users’ prefer-
ences and are also relatively cheap to acquire when compared with
manual labels [4, 19, 32, 35, 41]. These studies demonstrated that
through mining personalized signals from query logs, a search en-
gine can re-rank search results and obtain more relevant rankings
for individual users. In this paper, we focus on exploiting informa-
tion from the sequences of past queries and sessions and build a
dynamic user profile based on input query.

Previous studies have revealed that diverse features, such as
click counts, user topical interests, click entropy and so on, could
be extracted from user query logs to help personalize search results.
[4, 11, 16, 33, 40]. However, few studies have leveraged sequen-
tial information hidden in past queries and sessions. Intuitively, a
more recent query or session should contribute more than an older
one to the current search. For example, a user may have searched
for "cherry blossom Japan", "cherry jam" and so on, but is now
interested in mechanical keyboard and intends to obtain some in-
troductions. His query "cherry reviews" should be more related to
the keyboard brand rather than the fruit or the flower. Previous
studies attempted to simply apply an exponential decay to distin-
guish the recent and old search behaviors [41, 43]. No significant
difference was observed when using such temporal weightings [4].
However, the influence of a previous query depends on more com-
plex factors than merely the time. A highly related previous query
may continue to have a strong influence on the interpretation of
the current query in the same session even after a long time span.
In this paper, we will use a deep learning framework to account for
such factors in the sequential influence patterns.

When building the user profile, another natural intuition is that
previous queries and sessions are not always useful [40]. For ex-
ample, the profile constructed for previous query "peanut allergy
symptoms" is probably useless when the user is searching for "JAVA
book". In contrast, if the user once searched "JAVA runtime environ-
ment", then we can infer that the book is about "JAVA programming"
instead of "JAVA Island". Based on such observations, we also devise

https://doi.org/10.1145/3269206.3271728

a query-aware attention mechanism to learn different weights for
previous sessions corresponding to the input query. By doing so,
we are able to build a dynamic user profile which attends to the
previous sessions that are more important to the current query.

User preference evolves over time, and some previous studies
attempted to capture this variation by distinguishing short- and
long-term user preferences [4, 21, 43]. A short-term user profile
is built from recent interactions within the same search session
and is useful to predict the following intents in the current search
task [43, 44]. A long-term user profile describes more long-standing
user characteristics and is less sparse than a short-term profile [23],
and it is built from previous sessions. Motivated by the hierarchical
structures contained in the click-through data, we propose to use hi-
erarchical recurrent neural network as our fundamental framework
to model a longer dependency in the sequential data.

More specifically, a short-term user profile is constructed from
the user behaviors in the same session to reflect the current search
interest. This is implemented by a RNN at low-level. In addition,
the long-term user profiles are built from the past sessions, which
are designed to reflect the user’s long-term interests. This is created
using a higher-level RNN in our model. In order to use the long-
term user profiles, we attribute weights to each long-term interest
profile using an attention model based on the current query. Then
the linear combination of all hidden state vectors is produced as
a more precise long-term interest vector. Finally, we compute the
similarity score between interest vectors and documents as our
personalized scores to tailor the original ranking. The whole frame-
work is trained through a learning-to-rank approach, LambdaRank
algorithm [5]. Taking advantage of the two interest vectors, we can
further enhance search results personalization.

In sum, our main contributions are twofold: First, we account
for the sequential information contained in click-through data and
generate a better user profile through a hierarchical recurrent neu-
ral network; second, we apply attention mechanism to scrutinize
all previous sessions and highlight the more important sessions
dynamically according to present information need.

The rest of paper is organized as follows. Section 2 summarizes
previous studies that are related to our paper. The proposed frame-
work to mine sequential information from query log is described in
Section 3. We discuss experimental setups in Section 4, and analyze
the results in Section 5. We conclude the work in Section 6.

2 RELATED WORK

The related work to this paper principally concerns three fields: (1)
Search Results Personalization, (2) Deep Learning in Information
Retrieval and (3) The Applications of Hierarchical Recurrent Neural
Network.

Search Results Personalization. Users’ past search interactions
with search engine have been revealed beneficial to web search
[6]. However, the improvement of ranking quality personalization
brings to users mostly depends on the richness of user profiles.
Among all intriguing research on personalizing search results, great
majority focused on building user profile based on click-through
data, since it is both accessible and informative. The personalized
features are extracted from click-through data and can be simply
categorized into two groups: click features and topical features.

Users often use search engine to navigate for the same document
which was satisfactory under the previously issued queries, and
this fact can be used as a safe and low-risk approach in personal-
ization. Teevan et al. [37] have demonstrated that there is a rich
opportunity to personalize search results through recognizing per-
sonal navigations. Many subsequent studies [4, 22, 38, 45] regarded
click-based features as their basic features and investigated more
from other angles. It is widely known that personalization some-
times plays against the goal of improving results. Therefore, click
entropy is often considered to ensure the expected utility of per-
sonalization on certain queries [11, 36]. More studies were focused
on building an appropriate latent topical user profiles. Early studies
[3, 31, 45] attempted to build user profiles with topics of clicked
documents which are learned from a manual on-line ontology, such
as the Open Directory Project (ODP)!. The potential problem of
this approach is that some classes of documents may not appear in
the on-line ontology, which could limit its application to dealing
with new documents [7, 16]. Recent studies applied a latent topic
model to determining these topics [7, 16, 39, 41]. Besides, topic en-
tropy is also proposed to measure the topical ambiguity of different
queries [33]. Li et al. [22] utilized semantic features produced by
a deep learning model as semantic features to improve in-session
contextual ranking. In addition to extracting features from query
logs, other information can be utilized to improve search results as
well. Bennett et al. [2] incorporated user location-based features
into personalization model. Collins-Thompson et al. [9] studied
and evaluated personalization by different reading levels. Different
from the previous studies which simply aggregate the historical
user behaviors as user profiles, our intuition is that the past behav-
iors should be differently conducive to current search according to,
for example, the time span and the current information need.

Strategies to implement personalization also varied considerably
from model to model. Wang et al. [42] and Song et al. [32] inves-
tigated adapting a generic ranking model for personalized search
through updating parameters for individual users. The model pro-
posed by Matthijs et al. [23] built user profiles with terms extracted
from browsing history, and personalized the rankings with the
matching between search snippets and these terms. As for the mod-
els focusing on topical user profile with Latent Dirichlet Allocation
(LDA) [7, 16, 39, 41], the authors directly calculated the similarity
between each document and established user profile, and used the
similarities as personalized scores to re-rank the results. Another
common approach is to train a ranking model using the Lamb-
daMART [46] learning algorithm as in [4, 38, 45]. LambdaMART is
evolved from LambdaRank [5] and can distinguish the importance
of features automatically based on boosted regression tree. Differ-
ent from aforementioned approaches, we employ a deep learning
framework to personalize search results. Instead of highly depend-
ing on the manual features, the framework does not need specific
preparation and only takes raw queries and documents with one
hot representation of words as inputs.

Deep Learning in Information Retrieval. Deep learning has been
introduced in many information retrieval tasks because of its sev-
eral advantages, such as the ability to learn word embeddings auto-
matically and to train end-to-end [24, 25]. Ad-hoc rankings have

Uhttps://dmoztools.net/

benefited enormously from deep learning methods and great re-
sults have been achieved. DSSM [18] and CDSSM [30] embedded
the query-document pair into a semantic space and ranked the
results by the similarity between the embeddings of documents and
queries. Severyn and Moschitti [29] also used a convolutional deep
neural network to represent query-document pair and computed
their semantic similarity. The model developed by Palangi et al.
[26] shared a similar idea but addressed the embeddings of queries
and documents using Long Short-Term Memory (LSTM) [17]. More
recently, some elaborate models like DRMM [14] and K-NRM [47]
were proposed to model word-level similarities and achieved even
better results. But little has been studied on applying deep learning
to search results personalization. Song et al. [32] adapted a global
ranking model with continue-train for each individual user to per-
sonalize the results. Li et al. [22] improved in-session contextual
results by involving semantic features generated by deep learn-
ing models. Different from these studies which incorporate deep
learning only as a component, we intend to train a complete deep
learning framework to personalize the search results.

The Applications of Hierarchical Recurrent Neural Network. The
hierarchical recurrent neural network (HRNN) was firstly proposed
by El Hidi and Bengio [12] aiming at modeling longer dependence
in the sequential data. Since then people gradually realized that
many real tasks contain hierarchically sequential dependencies,
and HRNN attracts increasing attention from various communities.
Quadrana et al. [27] employed HRNN to deal with cross- and in-
session commodity information in a session-based recommendation.
Besides, hierarchical recurrent encoder-decoder was designed to
handle text generation, such as building dialogue system [28] and
query suggestions [34]. In addition to basic hierarchical recurrent
neural network, in this paper we also employ an attention model
to generate dynamic user profile based on current query.

3 PERSONALIZATION FRAMEWORK

The one-size-fits-all retrieval models are known to be suboptimal
and can be potentially improved with search results personaliza-
tion. Through re-ranking the unpersonalized results for different
users according to their interests, search engines can provide better
search experiences to individual users. In this paper, we focus on
mining sequential information and building dynamic user profiles
using users’ past interactions. Specifically, we employ a framework
based on hierarchical recurrent neural network with query-aware
attention to learn short- and long-term user profiling automati-
cally. The short-term interest is collected from current session, and
the long-term interest describes the preferences inferred by other
sessions before the current session.

To start with, we formulate our problem as follows. Suppose that
for each user u, there is a query log £, which includes past sessions
Ly = {81, ...,Sm-2,Spm-1} and current session Sy, where M is
the index of the current session. Each session is defined as a se-
quence of queries and a list of documents retrieved for each query,
denoted as Sy, = {({gm,1.dm, 1,15 - }s s {qmynp> A, 15 -1 1
where np, represents the total number of queries in the session
Sm. In the current session Sy, the user is issuing a query g, n,,
and a document ranking list D = {d1,d>, ...} is returned by the
search engine, where d; is short for dpy, ,,, ;. For each document,

we want to compute a relevance score separately based on the
issued query gy, pn,,, and past interactions £, and Sy:

score(d;) = score(d; g, nyy+ S Sh—1. - S1)
= score(d;|q M, n,,) + score(d;|.Ly) + score(d;|Sar),

where score(d;|qp, n,,) represents the relevance between docu-
ment and query, score(d;|L,,) and score(d;|Sys) correspond to the
relevance with regard to long- and short-term user interests respec-
tively. Finally, we re-rank the document list O according to the
overall score score(d;), to produce a personalized ranking list.

As shown in Figure 1, we devise a deep learning framework
based on HRNN to calculate the above personalized scores using
query logs and to predict the optimal document ranking list. We
elaborate our model based on three main components as follows: (1)
Exploiting sequence-enhanced user interests, (2) Modeling dynamic
user profiles and (3) Re-ranking.

3.1 Exploiting Sequence-enhanced User
Interests

As we stated in Section 1, traditional methods for building topical
user profiles have several potential problems. Most of them ignored
the sequential information contained in historical user behaviors.
Inspired by the ability of RNN to model sequential data and the hi-
erarchical structure of query logs, we propose to use a Hierarchical
RNN to model user interests with click-through data.

Recurrent neural network has been widely used in natural lan-
guage processing because of its ability to model the sequences of
words and sentences. After inputs at each time point, the RNN cell
is able to determine what information will be kept and passed to
next state, and what to discard. More sophisticated RNN cells such
as Gated Recurrent Unit (GRU) [8] and Long Short-Term Memory
(LSTM) [17] were proposed to solve vanishing gradient problems
and learn a long-term dependency. Specifically, we employ GRU
as a basic RNN cell in our model, since it has a relatively simpler
structure which is easier to train. The reasons we devise a two-
level structure include: (1) The click-through data is intrinsically
hierarchical with intra-session interactions conveying short-term
interest and inter-session interactions reflecting long-term prefer-
ence; (2) To enhance the ability of our framework to model longer
dependency, specifically to learn longer user interests.

3.1.1 Modeling short-term user interests. Within a session S, a
user issues a series of queries. Sometimes this user issues a query
at first and reformulates it in the following queries. During this
procedure, the user probably clicks on certain documents and may
be satisfied by their content. Intuitively, both the satisfactory doc-
uments and the order of these queries are highly informative to
inferring the real intent and should be utilized while tailoring the
ranking of the result lists.

In our model, the inputs to the low-level RNN is extracted from a
subset of the session S, = {{gm.1, Dm.1}s > {qm.np» Dimnyy s
where D, ; represents the set of SAT-clicked documents under
query qm, ;. And we use the concatenation of query vector g, ;
and the average vector dy,,; of document vectors in Dy, ; to feed
the RNN. Note that the average document vector dy, ; is assigned
to a zero vector if the user is not satisfied by any documents. To
be specific, for each query q € R and document d € R%/ their

R R
|

Query-aware attention

Input query Weights

i
i
b Ay,
i
|

: Modeling
long-term interests

|
R Re-ranking

DQn g-term
intsrest vector
\

Candidate document !

dM,nM

Re-ranking
score

N Modeling il
L] .
L short-term interests !

e 66 o e o ® 66 o o O [J ® o0 o i

o 0660 o o O e 66 o e o e o6 0o o o o ® o0 o i .

® 66 o o o o 060 o o o e o6 o o e o ® o0 o i Adgtitional
I': [fedtures

4y, du a4y, dip G din Gy x4y, daa Ty dom Qy_gg D11 Gz duo1z Gy_gpy, , Di-tag Ayy dui Gy, duz i

Session 1 Session 2 Session M-1 Session M it

Sh(;rfl-lerm
J inferest vect

Figure 1: The architecture of our personalization framework. Given query and document representations in each past session,
the interest vector of the session is calculated as the last latent state vector of a low-level RNN, which is then proceeded into a
high-level RNN. Next, weights are applied on each latent state vector of the high-level RNN according to the input query and
generate the long-term interest vector. By matching the interest vectors with candidate documents, and involving additional

features, we compute the final personalized scores.

representations are calculated as the weighted average of the word
representations w € R multiplied by TF-IDF weights, while the
words are represented by distributional vectors looked up in an
embeddings matrix W € RIVIxde This part could be replaced by a
more complex model such as Doc2Vec, CNN, or RNN model, which
also involves more parameters and increase the difficulty of training.
Then the session-level RNN calculates a series of latent state vectors
according to the inputs and previous state vectors, formally:

hin,n = f(hin,n_pqm,n’dm,n)

where h},, , € R%! and h! , is initialized by a zero vector. Note
that we use superscript 1 and 2 to distinguish the notations in
low- and high-level RNN respectively such as hidden state vectors.
The RNN cell f(-) can be vanilla, LSTM, and GRU cell, which is
implemented as GRU in our model:

rrln,n = O'(er [gm.n;dm.n] + Vrlhin,n—l)’

Z}n,n = O'(Wzl [gm,n; dm,n] + Vzlhln’n_l),

c}n’n = tanh(Wl[qm,n;dm,n] + Vl(r,ln,n -h:n’n_l)),

hin,n =(1- Ziln,n) : hln,n—l + zin,n : C}n,n’

where h}, , € R, the reset gate ri.n and update gate z7, ,
control the trade-off between previous states and present inputs,
o(-) is the sigmoid function, parameters W}, V!, W}, V! W! and
V! are shared across all sessions and updated during training. Each
latent hidden state h}, ,, models the short-term interest in session
Sm after issuing query q,, ». The dense vector of the last latent
hidden state, denoted by h,, ,, . is viewed as a representation of

the whole session, i.e. the short-term interest vector, which is used
as h}, for short in the following parts.

3.1.2 Modeling long-term user interests. Looking at the whole search
history, some interests do not change frequently alongside time.

For example, if a user kept searching "JAVA runtime environment”,

"JAVA data type", and "JAVA string to int", the user was proba-
bly a programmer. Even though after a very long time this user

issued another query "JAVA Book", there should still be a great

chance that the user is looking for a book of JAVA programming

instead of JAVA Island. Therefore, the parameters of such cell states

of interests should change less frequently than the parameters of

short-term model, and this fact motivates us to build a hierarchical

structure in our framework. Therefore, we add another RNN to

encode a higher level information flow.

The high-level RNN takes the short-term interest vectors (for past
sessions) {h%, s h}w_l} outputted by the low-level RNN as inputs.
It computes the sequence of user representations {h%, - h%,[_l} at
the end of every session. Formally:

hZ, = f(h%,_,. hp,).

where h?, € R%2, and hg is initialized by a zero vector. The RNN
cell f(-) is similarly defined in the low-level RNN:

r2, = a(WrhL, + V2R),
2%, = o(W2hL, + VZRE),
2, = tanh(W?h, + V2(rZ, - B2),

2 _ 2 2 2 .2
hy, = (1-zy,)-hy,_ +2zy, - cpy,

where parameters W,Z, Vrz, sz, VZZ, W2, and V2 are shared across
all users and updated during training. Analogously, each state hZ, of
this layer models long-term interest of user u after the session S,
ends. A simple way to obtain the long-term user interest vector is to
adopt the last latent state vector h?\/[—l directly. However, this could
introduce unnecessary noise as we stated in Section 1. To avoid
this issue, we implement an attention model to assign query-aware
weights to long-term interest vectors {h%, v h?\/[—l} in the end of
different sessions, so as to highlight different parts of historical
search behaviors dynamically. This intuitive idea is proved effective
and better than plain RNN model in our experiments.

3.2 Building Dynamic User Profiles

As discussed in Section 1, the same past interactions could con-
tribute differently to personalized rankings under different search
circumstances. We believe that discriminating previous behaviors
is necessary in building an effective user profile. Vu et al. built
user profiles using dynamic group formation based on input query
[40]. In our model, we deploy an attention model to apply different
weights for each previous session based on current query. Note
that in an extreme case, the weights for some interactions should
be very high when a user issues a historical query to re-find the
information they have searched before. Such re-finding problem
has been well studied by Teevan et al. as personal navigation [37]
and is a special case naturally incorporated in our model.

Attention mechanism was first proposed in machine translation
to deal with the limitation of fixed-length representation of input
sentences [1]. Similarly we hypothesize that encoding the click
through data into a fixed-length representation is not reasonable
when we are personalizing search results under different situations.
Therefore, with respect to the current query, we assign query-aware
weights to past interactions and compute a more precise long-term
user profile. In other words, we suppose that the long-term interest
vector is influenced by the current information need dynamically.
At the end of session Sys_1, we calculate weights {a1, ..., apr—1}
for each past interest vector in {h%, - hfw_l} as follow.

€ = ¢(‘1M, nM,h?),
exp(ei)
SM T exp(e;)

adj =

where ¢(-) is a multilayer perceptron (MLP) with tanh(-) as acti-
vation function in our model, which is updated during training and
could be replaced by more complex functions in the future. Then
the query-aware long-term interest vector hi’,fq_l is computed by a

weighted linear combination of {h?, ..., h?\/f—l }:

M-1
2,q _ 12
hyl, = E aih;.
i=1

In sum, we denote the final short- and long-term interest vectors

as h}w’ - and h?\’dq_l respectively and use them to re-rank the search

results in the following.

3.3 Re-ranking

Finally we re-rank the original results using the personalized infor-
mation we collect. Given the short- and long-term interest vectors,
1 29
thm and hyy” |,
document by measuring its similarity to these two interest vectors:

score(d;| L) = sim((hyL) Wi, dy),
score(d;|Sy) = sim((hy ,)T Ws, di),

we calculate the personalized ranking scores of a

where W € R4 %de W, e R%n2*4e are two similarity matrices
whose functions are to project the interest vectors into the same
semantic space as the documents, which are optimized during train-
ing. The similarity function sim(-) is defined as:

xTy
X111y

In addition to personalization scores calculated by our model, we
also incorporate query-document relevance feature and click-based
features as additional features. Since the original query-document
features are inaccessible in our dataset, here we use the original po-
sition of the document as a feature. Also, the click features include
the total number of historical clicks on the candidate document by
the user, the number of clicks on candidate document under the
input query by the user and the click entropy of input query. The
reason we incorporate click entropy is because the value of person-
alization varies a lot across different queries, and indiscriminately
applying personalization on all queries could produce an adverse
effect on the overall quality [11, 36]. Note that as for fair compari-
son, the baseline model is a more complex model that incorporates
more than these three features. And our idea is focused on build-
ing topic-based user profile instead of investigating on click-based
features as discussed in Section 1. These additional features are fed
into a multilayer perceptron (MLP) with tanh(-) as the activation
function. Finally, we sum up the scores calculated by different parts
as the final relevance score.

We choose a basic ranking algorithm, LambdaRank [5], to train
the whole framework. We generate training pairs from query logs
by treating the SAT-clicked documents as relevant samples and the
others as irrelevant ones. Then we use the representations of docu-
ment pairs to calculate the loss. Take a pair of relevant document
d; and irrelevant document d; as an example. The loss function is
the product of cross entropy between desired probabilities and pre-
dicted probabilities and the change of metrics, A, while swapping
the positions of the two documents, defined as:

loss = (_I_’ijl(’g([’ij) _5ji10g(Pji))|A|’
where p;; represents the predicted probability that d; is more rel-

evant than dj, and p;; represents the real probability. Specifically,
the predicted probabilities are computed by a logistic function,

1
1+ exp(—(score(d;) — score(d;)))

sim(X,Y) =

Pij

4 EXPERIMENT SETUP

4.1 Dataset and Evaluation

The dataset in our experiment is sampled randomly by users from
the logs of a commercial search engine, comprising click-through

Table 1: Basic statistics of the dataset.

Item Statistic ‘ ‘ Item Statistic
#days 58 #distinct queries 1,624,496
#users 33,204 #sessions 654,776

#queries 2,665,625 #SAT-clicks 1,228,028

data of the users between 15/ January 2013 and 28° h February
2013. Each piece of data in the log contains an anonymous user
identifier, a query, a session identifier, query issued time, the top 20
URLs retrieved by the search engine, clicks and dwelling time. The
logs are collected when personalization support was not applied,
so that our results are guaranteed not to be biased toward other
personalization signals. The basic statistics is shown in Table 1.

Following [4, 41], we similarly regard the click that has a dwelling
time of more than 30 seconds or is the last one in the session as
a satisfied click (SAT-click). We use the first six weeks of data
to generate basic user profiles and use the remaining two weeks
to train and test the models. Note that we use not only sessions
from the first six weeks but all sessions before current session to
calculate long-term interest vector. We split the last two-week data
into training and test sets according to the sessions instead of the
dates. The motivation behind this is that two weeks are a relatively
short time span and the distribution of queries sometimes is uneven
across dates. Besides, sessions can be viewed as search activities
with independent intents of users, thus can be reasonably divided
into different sets. For each user, we divide the sessions into 5:1
as training and test set respectively in the time order of sessions
and treat the last one fifth sessions of training set as validation set.
For each URL in the logs we retrieve its content and we remove
the URLs that cannot be found anymore. Then we preprocess the
documents by removing stopwords and punctuations. To ensure an
effective segmentation of training and test dataset, we also remove
the users who had less than 4 sessions.

We measure the quality of each ranking results using mean av-
erage precision (MAP), mean reciprocal rank (MRR), precision@1
(P@1) and average click position (Avg. Click). In addition to these
mainstream metrics, we further evaluate the rankings by measur-
ing the actual improvements on inverse document pairs [20], i.e. a
clicked document and the skipped documents ranked before it. Our
reason behind this is that clicks are not only based on the relevance
of documents but also the positions [10]. This kind of position bias
may make mainstream metrics somewhat problematic. For example,
the low-ranked documents have lower probabilities to be examined.
Even though some of them may be relevant, they are not clicked
because they are not examined by users. These results are labeled
as irrelevant by traditional metrics. Consequently, if we boost the
positions of the unexamined documents, the traditional evaluation
metrics cannot reflect the real changes. Therefore, we use the strat-
egy, which considers clicked documents are better than skipped
documents, proposed by Joachims et al. [20] to collect inverse doc-
ument pairs. We compute the number (#Better) and percentage of
improved pairs (P-Improve) in each personalized ranking to evalu-
ate the reliable improvements made by personalization methods.

4.2 Baselines

In addition to the original ranking generated by the search engine,
which is usually of very high quality, we further reproduce several
state-of-the-arts personalization models as follows.

P-Click: Users often issue an identical query to re-find the pre-
viously viewed information. This observation was confirmed by
Teevan et al [37] as a safe opportunity to improve the quality of
search engine. Dou et al. proposed P-Click [11] as a basic personal-
ization strategy. As for a user u, P-Click calculates the personalized
score of a document d as the percentage of clicks on this document
from past queries that are identical to the input query g, formally:

|clicks(g, d, u)|

seoreldlg:) = {icks(q, o0l + B

where |clicks(g, d, u)| represents the click counts on d from query
q by user u in the past, |clicks(g, ®, u)| is the total click counts on
query g by user u, and f is a smoothing factor set as 0.5. P-Click re-
ranks the results based on this personalized score and combines the
personalized ranking with original ranking using Borda’ ranking
fusion method. This model is also used as a baseline in [23]. Note
that this method is purely based on the click information.

Besides, we also care about the quality of user profile built by
our model and past studies. Many past studies built user profiles
based on clicked documents over a topic space. They assume that
the topic that users are interested in is reflected by the topics of
documents they clicked [33]. These past studies tailored the original
ranking either directly using similarity between user profile and
documents [40] or training a supervised model with diverse features
[4]. However, the intrinsic idea of these methods is the same - using
the aggregation of topics of past documents as user profiles.

SLTB: Bennett et al [4] implemented a personalization method
by extracting diverse features from short- and long-term behavior
(SLTB). SLTB generates personalized features through the combina-
tion of four options: (1) feature types (click-based or topic-based),
(2) document coverage (across all queries; under queries identi-
cal/generalizations/specializations to the current query.), (3) tempo-
ral angle (historic, session and aggregate) and (4) temporal decay
(able or disable). The decay is defined by the function 0.957(2r)-1,
Here p(q,) refers to the number of queries preceding the current
query and 0.95 is a chosen decay factor. As for the topical repre-
sentation of the documents, it uses the top two levels of the Open
Directory Project hierarchy as the 207 labels of documents and
trains a classifier to predict the categories of documents. Besides,
SLTB also implements click entropy [11], topic entropy [33], and
other features. All these features are fed into a learning-to-rank
model, LambdaMART [46], to generate a personalized ranking. As
for the parameters used in our experiments, especially those in the
Learning-to-rank models, we initialize them with parameters same
as in [4] and then tune them using the validation set.

PTM: Learning document representations from manual labels is
problematic according to Carmen [7], since the categories of some
documents are missing in the ontology. Instead, they proposed to
use an unsupervised approach to learn a multinomial distribution
for documents on the latent topics, and this method is also used by
Vu et al. [40] later. Here we reproduce the PTM model proposed by
[16] as our baseline. PTM calculated personalized scores based on

Table 2: Overall performances of models. Bold indicates the main model proposed by this paper, which is also the best among all
compared models. The improvements achieved by HRNN and HRNN+QA on MAP, MRR, P@1 and Avg.Click are significantly
larger than improvements made by any baseline model with paired t-test at p-value<0.01.

Model MAP MRR P@1 Avg. Click #Better P-Improve
Original Ranking .7226 .7334 .5931 2.292 - -

P-Click 7348 7467 .6015 2.138 4,834 .1419
PTM .6679 .6801 .5244 2.578 9,684 .2845
SLTB 7776 7881 .6698 2.054 16,257 4777
SLTB+PTM 7830 .7929 .6716 1.998 16,602 .4878
HRNN 7989 8107 .7039 1.930 18,166 .5338
HRNN+QA .8017 .8135 .7067 1.904 18,609 .5468

the likelihood of documents given both query and the user as:

score(d|q, u) « P(d)]_[Z P(w|2)P(ul2)} P(2|d),
weq z
where A balances the weight of user’s topical interest influencing on
the overall ranking, and P(d) is estimated with Dirichlet smoothing
based on the relative frequency of clicks on d in the whole log:

1

#clicks(d) + o Dl
X4, #clicks(d;) + o

SLTB+PTM: We also replace the topical features in SLTB by
the features generated by the topic model from PTM, and keep

the other features the same as in SLTB. We use this method as the
fourth baseline.

P(d) =

4.3 Our Models

To verify the effects of our personalization framework, we train
two personalization models formed with different compositions but
under a same learning setting. Specifically:

Hierarchical RNN+Query-aware Attention (HRNN+QA): The

complete model stated in Section 3;

Hierarchical RNN (HRNN): The Query-aware Attention is
disabled and the long-term interest vector is represented by the last
latent vector of the high-level RNN layer;

To determine a group of appropriate parameters, we apply a
grid search according to the performance of the model on the
validation set. We empirically use a two-layer network for the
attention and additional MLP. We use a range of word embed-
ding sizes d, € {300,1000}, sizes of short-term interest vector
ds1 € {100, 200,300, 500}, sizes of long-term interest vector dsy €
{200, 400, 600, 1000}, number of hidden units in attention MLP
dg € {512,1024}, number in additional MLP df € {32,64, 128},
and learning rates A € {1e™*, 173, 1e72}. No noticeable differences
are observed while changing learning rates. When embedding size
is larger, a relatively smaller size of RNN state will yield worse
results. Considering the balance of efficiency and result quality,
we finally chose a combination of parameters as d, = 300,ds; =
300, dsz = 600,d, = 1024,df = 64 and A = 1e™>.

Similar to [29], we initialize the word embedding matrix W with
a pre-trained unsupervised model and keep it fixed during the
training. In this experiment, we train an embedding matrix on the
documents from training dataset using the Google word2vec tool

2 Finally, as we state at Section 3, we use Mean Average Precision
as our metric to calculate A in the learning-to-rank model, since
MAP encourages to rank the most relevant documents at top po-
sitions, but we still evaluate the final rankings with four different
metrics. Besides, we adopt an early stop strategy to end the training
when the average loss on validation set stops decreasing in three
continuous epochs.

5 EXPERIMENTAL RESULTS AND ANALYSIS

As discussed in Section 1, the sequences of previous queries and
sessions are valuable to personalization and a static user profile
is not enough. Therefore, we are very interested in two research
questions: (1) Is hierarchical recurrent neural network able to mine
sequential information from query logs and learn a better topical
user profile? (2) Does attention mechanism help to highlight differ-
ent parts of search histories dynamically? To answer the questions,
we firstly evaluate the overall performances of models stated in the
previous section. Then we will discuss the effectiveness of attention
mechanism by visualizing the provided weights. In addition, we
will analyze the performances of baseline models and our models
under different situations, including on queries with different click
entropies, on repeated and non-repeated queries, and on queries at
different positions in a session.

5.1 Overall Performance

We evaluate the results generated by the search engine, baseline
models and our proposed models using MAP, MRR, P@1, Avg.
Click, #Better, and P-Improve. In addition to original ranking, the
baseline models include P-Click, PTM, SLTB and SLTB+PTM, and
our frameworks include HRNN and HRNN+QA. All the scores are
computed over all test queries. Results are shown in Table 2. We
have the following observations:

(1) All personalization methods except PTM successfully im-
prove the original ranking. Directly using user profiles to re-rank
the results might cause many problems. For example, applying
personalization on queries with low click entropies may increase
the risk of personalization. It is observed that P-Click only fixes
about half of inverse document pairs of those improved by PTM. In
contrast, though very simple, P-Click improves the original ranking
in a relatively safe way. SLTB and SLTB-PTM significantly improve

Zhttps://code.google.com/archive/p/word2vec/

chadwicks| 0.32

I clearance]

c jobs [0.28

O avon.com logi .24
0.20

] hotmail

Vit o liv 0.16

el

W virginia Inllcry_ 0.12

@ Casey Anthon

O Bankruptcy] 0.08

medonalds meny '

Virginia welfare _facebook _ dollar tree times magazineweather forcast
lottery ban weekly ad

Input Queries
Figure 2: The weights of past sessions when different queries
are issued. A darker area indicates a larger weight.

original ranking with paired t-test at p<0.01. This proves that a well-
trained learning-to-rank model with rich features can effectively
yield personalization under different circumstances.

(2) As shown in Table 2, our models generate great improvements
over all baseline models and the differences are statistically signifi-
cant with paired t-test at p<0.01 level. More specifically, HRNN+QA
obtains rankings that are 0.0187 higher in MAP than the rankings
generated by SLTB+PTM. As for reliable improvements, HRNN+QA
produces a 12% increase in the number of improved inverse doc-
ument pairs than SLTB+PTM. This outcome demonstrates that
our models are able to learn more precise user profiles, and conse-
quently yield better personalization.

(3) We find that attention mechanism works on HRNN and im-
proves its results with 443 more inverse document pairs fixed. How-
ever, such improvement is not statistically significant. One possible
reason is that the attention model is difficult to apply on a relatively
long sequence (around 80 queries were issued per user). Since the
attention layer calculates weights that despite the time span, some
old behaviors might be assigned undeserved weights in the final
profile and destroy the sequential information. One potential re-
placement of attention model is to apply Reinforcement Learning to
discretely select the search sessions and queries, which successfully
worked on sentence classification task with noise data [13].

The overall performances provide us a general evaluation on
these methods. Observing the significantly improvement gen-
erated by our model, it is safe to draw conclusion that hi-
erarchical recurrent neural network is able to model the se-
quential information and build better user profiles than tra-
ditional methods. To further analyze the function of attention
model introduced in our framework, it is necessary to find out on
what queries the model applies a higher weight. In the next section,
we give a real example and visualize the weights.

5.2 Visualization of Weights Assigned by
Attention Model

While personalizing search results in a specific situation, it is unnec-
essary for search engine to use the whole search history. Depending
on the input query, some previous information is useless. Blindly
using all data could bring noise into user profiles. Intuitively, ses-
sions that have more similar intents should contribute more in
building the current user profile. In this paper, we implement a
query-aware attention mechanism to highlight different past in-
teractions on the basis of input query and generate user profile
dynamically. Table 2 shows that using this kind of dynamic user

0.14 N SLTB EA HRNN
BN SLTB+PTM BT HRNN+QA

Click Entropy

Figure 3: The improvements over original ranking on
queries with different click entropies.

profiles improves personalization. To further analyze the influence
of attention mechanism, we sample a user from query logs who
has relatively rich search history, and visualize the weights applied
on different sessions. To make it clearer, we represent the intent
of each past session with a typical query from it and sum up the
weights of different sessions with the same intent. We select five
input queries in the test data and remove the past sessions that
have weights less than 0.01 for any of the queries.

As shown in Figure 2, we find that the long-term interest vector
attends to past sessions that are more relevant to input queries. In
general, the attention can filter the irrelevant information in the
query logs. For example, when a user issues a query "virginia wel-
fare lottery ban", the past session containing "virginia lottery" gains
the largest weight and the other sessions obtain lower weights.
We also find that the past sessions for "facebook" are weighted
highly in all five input queries, which is contrary to our intuition.
One possible reason is that queries on "facebook” have been issued
frequently in the past, so the aggregation of these different past ses-
sions leads to a higher weight for "facebook" sessions. Input queries
such as "times magazine" and "weather forest" whose topics did
not occur in the search history obtain weights that do not vary too
much. The visualization of weights on past sessions shows
that the attention model is able to distinguish the relatively
important sessions in the user query logs.

In order to further verify the effects of our model, it is worth-
while to analyze on what kinds of queries that our methods could
achieve larger improvements. In the following sections, we focus
on comparing our frameworks with two SLTB baseline models. We
use AMAP, the change of MAP over original ranking, as the main
metric to describe results.

5.3 Performance on Navigational and
Non-navigational Queries

A larger click entropy often indicates a higher potential for per-
sonalization, as it represents a larger probability of diverse user
intents [11, 36]. To study this problem, we firstly group the queries
with cutoff of click entropy at 1.0. Teevan et al. [37] used it as
an indicator of distinguishing general navigational queries. Then
we compare the improvements made by different models on two
groups of queries.

As seen in Figure 3, all personalization models produce improved
rankings on both groups of queries, and the average improvements

. SLTB B2 HRNN
O.15-mmm SLTB+PTM BSEN HRNN+QA

0.10

AMAP

0.05

0.00 “__%§

Non-repeated queries Repeated queries
Query Category

I

Figure 4: The improvements over original ranking on re-
peated queries and non-repeated queries.

on non-navigational queries (click entropy>1) are much larger
than on navigational queries (click entropy<1). In general, our
model based on HRNN+QA outperforms any other methods and
all of our models outperform the baseline methods (p<0.01). Specif-
ically, as for navigational queries, the AMAP of our framework
based on HRNN+QA is 0.0124 higher than the best baseline model’s
(SLTB+PTM). Such improvement further increases to 0.0337 when
click entropy is larger than 1.0. Also, all of our two models have im-
provements of about 0.03 on the non-navigational queries. These re-
sults confirm that our framework works better on non-navigational
queries than navigational queries.

5.4 Performance on Repeated and
Non-repeated Queries

In this experiment, we categorize test queries into two groups:
repeated queries and non-repeated queries. A repeated query is
a query that the user has issued in the past, and this indicates
that the user probably issues the current query to re-find the same
information. The click-based personalization methods we discuss
in Section 2 highly depend on the information extracted from these
repeated queries. If a model never saw the query in the past, most
click-based features will be disabled. Therefore, it is worthwhile to
evaluate our framework on these non-repeated queries when click
based features do not work.

As shown in Figure 4, all methods significantly improve the orig-
inal results on repeated queries, while our models also outperform
the baseline models. The MAP of ranking generated by HRNN+QA
on these queries is around 0.03 larger than by SLTB+PTM. With
the topical information, the model can better promote the clicked
results. Note that personalization on the non-repeated queries is
very challenging when baseline models fail improving the search
results. On the contrary, our framework successfully generalizes to
the queries that are never seen before. Due to the lack of click infor-
mation for non-repeated queries, only topical features can play a
role in tailoring the search results. This observation shows that it is
insufficient to simply use an aggregation of clicked documents, and
it demonstrates the effectiveness of our model in learning a better
user profile. In addition, it shows that applying attention model or
not does not make a big difference on non-repeated queries. The
majority of the improvements achieved by attention model occurs
on repeated queries, which means attention model further highlight
the very similar previous queries and reduce the noise.

0.020

B Long-term RNN ™ HRNN

0.015

0.010 ,

0.005 E |
0.000 :

Query Positions in a Session

[— Short-term RNN EEEE RNN]

AMAP

RN NNNNANN N

[-]
[N\
NSNS SN
AN
NNNNNNRNRNN
NS

-
N
w
IS
v
v
o

Figure 5: The improvements of models vs. positions of query
in sessions.

5.5 Performances on Queries at Different
Positions in Sessions

In Table 2, we find that hierarchical structure achieved the best
compared with baseline models, but the roles of long- and short-
term interest vectors in our framework are still unclear. In this
experiment we analyze the performances of each part on queries at
different positions in a session. To avoid the influence of additional
features, we focus our experiment on non-repeated queries, where
click-based features are no more useful. Specifically, we train a plain
RNN model whose hierarchical RNN layer is replaced by a one-layer
RNN. The model unpacks the session-segmented inputs of HRNN
and feeds the whole historical data to the RNN to calculate evolving
latent state vectors. In addition, we set a short-term RNN model
by disabling the high-level RNN and using the short-term interest
vector only, and also a long-term RNN model in the similar way:.
Note that the long-term RNN model still depends on the low-level
RNN to modeling past interests. We analyze the performances of
above frameworks and compare them with the complete HRNN.
From Figure 5, we find that short-term RNN steadily improves
the results more with the increasing of query positions, because
more information is available at a higher position during the session.
This observation is consistent with Bennett et al. [4]. In contrast,
long-term RNN in our model generates relatively stable benefits on
queries at different positions. On the queries at first position in each
session, short-term RNN fails to improve the search results, since
no session information is available. In that case, the zero short-term
vector is used, which turns out to be ineffective. By analyzing the
queries at first positions, we find that hierarchical structure
is better in modeling long-term dependency, and it produces
improvements two times larger than plain structure.

6 CONCLUSION

Large amount of data is generated every single day alongside the in-
teractions between users and search engines. Previous studies have
demonstrated that by extracting diverse features from large-scale
query logs, search engines are able to tailor the original ranking to
satisfy individual users. However, none of these studies successfully
exploit the sequential information contained among queries and
sessions. In this paper, we propose to apply a deep learning frame-
work to solve this problem. Specifically, we deploy a hierarchical
recurrent neural network with query-aware attention mechanism

to dynamically generate the topical user profiles. The evaluation
on the query logs from a commercial search engine shows that
our framework significantly outperforms the existing non-deep
learning methods. In contrast to previous studies which assigned a
timespan-based decay on historical data or ignored the sequential
information, our model is able to automatically decide what to keep
in the user profiles and consequently generate better user profiles.
Our experiments also confirm that the query-aware attention model
is able to highlight the important parts from previous queries and
sessions. To further improve our framework, we can replace the
attention model with a Reinforcement Learning model, leveraging
its ability to discretely select past data. Besides, how to leverage
documents skipped by users is also worth further studying.

ACKNOWLEDGMENTS

Zhicheng Dou is the corresponding author. This work was sup-
ported by National Key R&D Program of China No. 2018YFC0830703,
National Natural Science Foundation of China No. 61872370 and No.
61502501, and the Beijing Natural Science Foundation No. 4162032.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Paul N Bennett, Filip Radlinski, Ryen W White, and Emine Yilmaz. 2011. Inferring

and using location metadata to personalize web search. In Proceedings of the

SIGIR’2011. ACM, 135-144.

Paul N Bennett, Krysta Svore, and Susan T Dumais. 2010. Classification-enhanced

ranking. In Proceedings of the WWW’2010. ACM, 111-120.

[4] Paul N Bennett, Ryen W White, Wei Chu, Susan T Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the impact of short-and long-
term behavior on search personalization. In Proceedings of the SIGIR’2012. ACM,
185-194.

[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of ICML’2005. ACM, 89-96.

[6] Fei Cai, Shangsong Liang, and Maarten De Rijke. 2014. Personalized document
re-ranking based on bayesian probabilistic matrix factorization. In Proceedings of
the SIGIR’2014. ACM, 835-838.

[7] Mark J. Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. 2010. To-
wards query log based personalization using topic models. In Proceedings of the
CIKM’2010. 1849-1852.

[8] Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP’2014. 1724-1734.

[9] Kevyn Collins-Thompson, Paul N Bennett, Ryen W White, Sebastian De La Chica,
and David Sontag. 2011. Personalizing web search results by reading level. In
Proceedings of the CIKM’2011. ACM, 403-412.

[10] Nick Craswell, Onno Zoeter, Michael J. Taylor, and Bill Ramsey. 2008. An experi-
mental comparison of click position-bias models. In WSDM’2008.

[11] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. 2007. A large-scale evaluation

and analysis of personalized search strategies. In WWW’2007. ACM, 581-590.

Salah El Hihi and Yoshua Bengio. 1996. Hierarchical recurrent neural networks

for long-term dependencies. In NIPS’1996. 493-499.

[13] Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xiaoyan Zhu. 2018. Reinforce-
ment Learning for Relation Classification From Noisy Data. In AAAI’2018.

[14] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In CIKM’2016. ACM, 55-64.

[15] Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krish-
namurthy, David Lazer, Alan Mislove, and Christo Wilson. 2013. Measuring
personalization of web search. In WWW’2013. ACM, 527-538.

[16] Morgan Harvey, Fabio Crestani, and Mark J Carman. 2013. Building user profiles
from topic models for personalised search. In CIKM’2013. ACM, 2309-2314.

[17] Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM’2013. ACM, 2333-2338.

3

=

[12

[22]

[23

[24

N~
2

[26

[27

w
S

®
3

@
2

(36]

(37]

[38

[39

[40]

N
furg

[42

[43

[44

[45

[46

N
)

Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In
SIGKDD’2002. ACM, 133-142.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately interpreting clickthrough data as implicit feedback. In SI-
GIR’2005. 154-161.

Lin Li, Zhenglu Yang, Botao Wang, and Masaru Kitsuregawa. 2007. Dynamic
adaptation strategies for long-term and short-term user profile to personalize
search. Advances in Data and Web Management (2007), 228-240.

Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. 2014. Deep
learning powered in-session contextual ranking using clickthrough data. In
NIPS’2014.

Nicolaas Matthijs and Filip Radlinski. 2011. Personalizing web search using long
term browsing history. In WSDM’2011. ACM, 25-34.

Bhaskar Mitra and Nick Craswell. 2017. Neural Models for Information Retrieval.
arXiv preprint arXiv:1705.01509 (2017).

Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur Rahman,
Pinar Karagoz, Alex Braylan, Brandon Dang, Heng-Lu Chang, Henna Kim, Quin-
ten McNamara, and others. 2018. Neural information retrieval: At the end of the
early years. Information Retrieval Journal 21, 2-3 (2018), 111-182.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep sentence embedding using long
short-term memory networks: Analysis and application to information retrieval.
TASLP 24, 4 (2016), 694-707.

Massimo Quadrana, Alexandros Karatzoglou, Balazs Hidasi, and Paolo Cremonesi.
2017. Personalizing Session-based Recommendations with Hierarchical Recurrent
Neural Networks. In RecSys’2017. 130-137.

Tulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C Courville, and
Joelle Pineau. 2016. Building End-To-End Dialogue Systems Using Generative
Hierarchical Neural Network Models.. In AAAI’2016. 3776-3784.

Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to rank short text
pairs with convolutional deep neural networks. In SIGIR’2015. ACM, 373-382.
Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In CIKM’2014. ACM, 101-110.

Ahu Sieg, Bamshad Mobasher, and Robin Burke. 2007. Web search personalization
with ontological user profiles. In CIKM’2007. ACM, 525-534.

Yang Song, Hongning Wang, and Xiaodong He. 2014. Adapting deep ranknet for
personalized search. In WSDM’2014. ACM, 83-92.

David Sontag, Kevyn Collins-Thompson, Paul N Bennett, Ryen W White, Susan
Dumais, and Bodo Billerbeck. 2012. Probabilistic models for personalizing web
search. In WSDM’2012. ACM, 433-442.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In CIKM’2015. ACM, 553-562.
Mirco Speretta and Susan Gauch. 2005. Personalized search based on user search
histories. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM Interna-
tional Conference on. IEEE, 622-628.

Jaime Teevan, Susan T Dumais, and Daniel J Liebling. 2008. To personalize or
not to personalize: modeling queries with variation in user intent. In SIGIR’2018.
ACM, 163-170.

Jaime Teevan, Daniel J Liebling, and Gayathri Ravichandran Geetha. 2011. Un-
derstanding and predicting personal navigation. In WSDM’2011. ACM, 85-94.
Maksims Volkovs. 2015. Context models for web search personalization. arXiv
preprint arXiv:1502.00527 (2015).

Thanh Vu, Dat Quoc Nguyen, Mark Johnson, Dawei Song, and Alistair Willis.
2017. Search personalization with embeddings. In ECIR’2017. Springer, 598-604.
Thanh Vu, Dawei Song, Alistair Willis, Son Ngoc Tran, and Jingfei Li. 2014.
Improving search personalisation with dynamic group formation. In SIGIR’2014.
951-954.

Thanh Vu, Alistair Willis, Son N Tran, and Dawei Song. 2015. Temporal latent
topic user profiles for search personalisation. In ECIR’2015. Springer, 605-616.
Hongning Wang, Xiaodong He, Ming Wei Chang, Yang Song, Ryen W. White,
and Wei Chu. 2013. Personalized ranking model adaptation for web search. In
SIGIR’2013. 323-332.

White, W Ryen, Bennett, N Paul, Dumais, and T Susan. 2010. Predicting short-
term interests using activity-based search context. (2010), 1009-1018.

Ryen W White, Peter Bailey, and Liwei Chen. 2009. Predicting user interests
from contextual information. In SIGIR’2009. ACM, 363-370.

Ryen W White, Wei Chu, Ahmed Hassan, Xiaodong He, Yang Song, and Hongn-
ing Wang. 2013. Enhancing personalized search by mining and modeling task
behavior. In WWW’2013. ACM, 1411-1420.

Qiang Wu, Chris JC Burges, Krysta M Svore, and Jianfeng Gao. 2008. Ranking,
boosting, and model adaptation. Technical Report. Technical report, Microsoft
Research.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In SIGIR’2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Personalization Framework
	3.1 Exploiting Sequence-enhanced User Interests
	3.2 Building Dynamic User Profiles
	3.3 Re-ranking

	4 Experiment Setup
	4.1 Dataset and Evaluation
	4.2 Baselines
	4.3 Our Models

	5 Experimental Results and Analysis
	5.1 Overall Performance
	5.2 Visualization of Weights Assigned by Attention Model
	5.3 Performance on Navigational and Non-navigational Queries
	5.4 Performance on Repeated and Non-repeated Queries
	5.5 Performances on Queries at Different Positions in Sessions

	6 Conclusion
	Acknowledgments
	References

