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ABSTRACT
A large percentage of queries issued to search engines are
broad or ambiguous. Search result diversification aims to
solve this problem, by returning diverse results that can ful-
fill as many different information needs as possible. Most
existing intent-aware search result diversification algorithm-
s formulate user intents for a query as a flat list of subtopics.
In this paper, we introduce a new hierarchical structure to
represent user intents and propose two general hierarchical
diversification models to leverage hierarchical intents. Ex-
perimental results show that our hierarchical diversification
models outperform state-of-the-art diversification methods
that use traditional flat subtopics.

Keywords
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1. INTRODUCTION
In web search, the majority of short queries are ambigu-

ous or broad when it comes to specifying a user’s information
need [16, 18, 25, 33, 34]. For example, by issuing an ambigu-
ous query [apple], one user might be searching for infor-
mation about the IT company Apple, whereas another user
might be looking for information about the fruit. By issu-
ing a broad query [harry potter], a user may want to seek
contents covering various aspects, such as [harry potter

movie], [harry potter book], or [harry potter charac-

ters] within this broad topic. Traditional search may fail
to cover these different intents in the top ranks.
As an effective way to solve this problem, search result di-

versification, which aims to return diverse search results that
cover as many user intents as possible, has received a lot of
attention in recent years. Many search result diversification
algorithms [1, 2, 5, 14, 23, 25, 26, 31, 32, 36, 37, 42] and
evaluation metrics [1, 4, 8, 9, 28, 39] have been developed to
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improve and evaluate search result diversity. Some public
search result diversification evaluation tasks, including the
TREC Web Track Diversity task [11] and the NTCIR In-
tent/IMine task [22, 27], have been organized to evaluate
diversification approaches via public test collections.
In diversification, most existing algorithms generalize user

intents in a flat list of independent subtopics, such as topical
categories [1, 35], query reformulations by search engine [12,
13, 30], words or phrases extracted from top retrieved docu-
ments [3, 13], or combined subtopics from multiple external
resources [14, 17]. For instance, Santos et al. [30] repre-
sented different query intents as a set of Google suggestions
or related queries. Dang and Croft [13] extracted words or
phrases from top retrieved documents. Dou et al. [14] mined
subtopics from different types of resources.
In typical search result diversification tasks (such as TREC

and NTCIR), the intents of a query are predefined by hu-
man labellers. To achieve good performance, it is criti-
cal to automatically mine subtopics for a query and the
mined subtopics should properly match the predefined in-
tents. However, as the intents and subtopics are indepen-
dently obtained, it is not easy to match them, especially
when a flat intent list is used.
Let us take the query “defender” (topic number 20) in

TREC 2009 [6] as an example. Table 1 shows six man-
ually defined intents for it, including “Windows Defender
Homepage”, “Land Rover Defender”, “Defender Marine Sup-
ply”, “Defender Arcade Game Online”, “Windows Defend-
er Reports,” and “Chicago Defender Newspaper”. To mine
subtopics for the query, we use the approach proposed in
[12, 13, 30]. We send the query “defender” to a commer-
cial search engine and get back query suggestions “defend-
er windows”, “defender arcade game,” and “defender land
rover” (The first-level subtopics in Figure 1). When we take
them as subtopics for the query“defender”, we find that they
are too coarse to distinguish the user intents. For instance,
the subtopic “defender windows” (t1) covers both the user
intents “Windows Defender homepage” (s1) and “Windows
Defender Reports” (s5). So the diversity algorithm has the
risk to only select documents from subtopic t1 with respect
to the intent s1 without covering subtopic s5, or vice versa.
An easy remedy to the above problem is to use fine-grained

intents in diversification. By further sending the three subtopic-
s as queries to the search engine, we can get their query sug-
gestions as fine-grained subtopics (the second-level subtopics
in Figure 1). With the fine-grained subtopics, we can do a
better job to distinguish user intents. For example, “de-
fender windows home” (t1,1) and “defender windows prob-
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Table 1: Subtopics of query “defender” in TREC
2009 Web Track.
no. subtopic description
s1 I’m looking for the homepage of Windows Defend-

er, an anti-spyware program. (Windows De-
fender Homepage)

s2 Find information on the Land Rover Defender
sport-utility vehicle. (Land Rover Defender)

s3 I want to go to the homepage for Defender Marine
Supplies. (Defender Marine Supply)

s4 I’m looking for information on Defender, an arcade
game by Williams. Is it possible to play it online?
(Defender Arcade Game Online)

s5 I’d like to find user reports about Windows De-
fender, particularly problems with the software.
(Windows Defender Reports)

s6 Take me to the homepage for the Chicago Defender
newspaper. (Chicago Defender Newspaper)

lems” (t1,3) can be easily matched to user intents “Windows
Defender homepage” (s1) and “Windows Defender Report-
s” (s5). However, the fine-grained subtopics bring in a new
problem that multiple subtopics are matched to the same us-
er intent. For example, “defender land rover for sale” (t3,1),
“defender land rover usa” (t3,2), and “defender land rover
parts” (t3,3) are all related to the user intent “Land Rover
Defender” (s2). When simply combining the fine-grained
subtopics in a flat list, the diversity algorithm may first se-
lect one document from subtopic t3,1 (“defender land rover
for sale”), and then select another document from subtopic
t3,2 (“defender land rover usa”), unaware of the fact that the
selected documents match the same user intent s2 (“Land
Rover Defender”).
To solve the above problems, we explore a new way of

organizing subtopics in a hierarchical structure. Figure 1
shows the two-level hierarchical subtopic structure for the
query “defender”. We can see that the six user intents in Ta-
ble 1 are mapped to the subtopics in both two levels. This
hierarchical structure maintains user intents with differen-
t granularity levels and the relationships between different
levels. It provides the flexibility of applying and balancing
different levels of intent granularity in diversification, which
ultimately increases the probability of correctly matching
more diverse intents.
In this paper, we propose a diversification framework to

explicitly leverage the hierarchical intents. In particular, we
extend the state-of-the-art diversification algorithms xQuAD
and PM2, and propose a Hierarchical xQuADmodel (HxQuAD)
and a Hierarchical PM2 model (HPM2). These hierarchical
models select documents that maximize diversity in the hi-
erarchical structure. For the example in Figure 1, if the pre-
viously selected documents have already cover the subtopic
“defender windows home”, the next selected document for
the intent “defender windows” should better come from the
subtopic“defender windows download”or“defender windows
problems”. Without the hierarchical structure, it is dif-
ficult for traditional diversification methods to distinguish
and balance these second-level subtopics. Moreover, after
selecting documents for the second-level subtopics “defend-
er windows home” and “defender windows problems”, which
belong to the same first-level subtopic “defender windows,”

Figure 1: Two-level hierarchical subtopics of query
“defender” from query suggestions of a commercial
search engine.

the next document is better to be related to another first-
level subtopic such as “defender arcade game” or “defender
land rover”. This situation is not considered in traditional
diversification methods when only the flat intent list is used.
We argue that real user intents are in a hierarchical struc-

ture sometimes. Recent work [15, 19] understands queries by
query facets and represents query facets by multiple groups
of facet items, where these query facets and their facet items
can be viewed as a two-level hierarchical explanation of the
query. In Table 1, real user intents of the query also lie in
a two-level hierarchy. It contains five first-level subtopics
“Windows Defender”, “Land Rover Defender” (s2), “Defend-
er Marine”(s3), “Defender Arcade Game”(s4), and“Chicago
Defender Newspaper” (s6). The subtopic “Windows Defend-
er” contains two second-level subtopics “Windows Defender
Homepage” (s1) and “Windows Defender Reports”. To mea-
sure the real user satisfaction on the query, it would be ideal
to evaluate diversity based on hierarchical intents. Unfor-
tunately we do not have such diversity judgment data and
evaluation metrics. In this paper, we still use existing met-
rics to evaluate our algorithms.
Our experiments are conducted on two-level hierarchical

subtopics which are automatically extracted from a com-
mercial search engine. The algorithms are evaluated on the
public TREC [7] dataset and the NTCIR [22] dataset. Ex-
perimental results show that by using hierarchical subtopics,
our hierarchical algorithms (HxQuAD and HPM2) outper-
form most state-of-the-art models including xQuAD [30], P-
M2 [12], TxQuAD, and TPM2 [13], in terms of ERR-IA [4],
α-NDCG [8], NRBP [9], and D�-nDCG [28]. Even when only
using single-level subtopics in the hierarchical structure, our
hierarchical algorithms still outperform their corresponding
algorithms which represent the same subtopics in a flat list,
in terms of ERR-IA, α-NDCG, and NRBP. The results show
that exploiting the hierarchical intent structure can benefit
search result diversification.

2. RELATED WORK
In early diversification algorithms, query intents were im-

plicitly considered to promote diversity by selecting docu-
ments with little content similarity. Maximal Marginal Rel-
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evance (MMR) [2] measured documents with cosine simi-
larities in vocabulary, and attempted to reduce redundan-
cy while maintaining query relevance in re-ranking. Some
work estimated document similarity in different ways, such
as using Kullback-Leibler divergence [38], ranking sentences
by random walks in an absorbing Markov chain [42], and
modeling directed graphs based on the document link struc-
ture [40]. These approaches assume that similar documents
will cover similar query intents, without considering exactly
which query intents are being covered.
Many researchers noticed the above problem and explicit-

ly considered query intents for diversification. IA-Select [1]
developed an intent-aware diversifying method by classified
topical categories for queries and documents based on ODP
taxonomy. xQuAD [30] used a greedy algorithm to maxi-
mize the coverage of query aspects. RxQuAD [35] explic-
itly provided a relevance formulation for query aspects. P-
M2 [12] divided diversification into two processes: finding
the best unsatisfied topic-by-topic proportionality, and then
choosing the best document based on the selected subtopic.
Intrinsic diversity [26] predicted the successor queries for
initiator query to seek which content to cover. Yu and
Ren [36] formulated diversification as a 0-1 multiple subtopic
knapsack problem. Fusion diversification [21] inferred laten-
t subtopics based on topic modeling. Some work promoted
diversity by leveraging subtopics from multiple external re-
sources, such as involving user clicks to help query aspect-
s [24], combining subtopics from different data types [14, 17].
Although these approaches generate query intents from var-
ious sources, combinations or models, they commonly rep-
resent intents in a flat list. In contrast, our work utilizes
hierarchical intents and provides hierarchical frameworks to
promote diversity of search results.
Some researchers use machine learning techniques to di-

versify search results, such as Structural SVMs [37] and R-
LTR [43]. In this paper, we focus on the unsupervised intent-
aware diversification. More specifically, we extend xQuAD
to hierarchical novelty-based model, and adapt PM2 for hi-
erarchical proportionality-based model.
There are a few prior art that are somewhat similar to

ours. Term level diversification [13] represented a subtopic
by a set of key terms, which is similar to our idea of denot-
ing a subtopic with a group of child subtopics in hierarchical
subtopic structure. Unlike considering hierarchical informa-
tion as we do, term level diversification integrated all terms
to build subtopics. We implement their basic models as
our baselines in our experiments. Concept hierarchy based
diversification [41] considered subtopic relations in result di-
versification. Instead of providing hierarchical frameworks
to handle hierarchical subtopics, it exploited concept hier-
archies to extract query subtopics in a flat list, utilized hier-
archical relations of subtopics to propose a structural simi-
larity function for subtopics, and incorporated this function
into the traditional xQuAD framework. This function it-
eratively selected documents covering important subtopics
that are less structurally similar to the subtopics covered by
the selected documents. This work was done in enterprise
search domain, as it is hard to build high-quality concept
hierarchies in web search. We implement this method by
adopting our hierarchical subtopics used in our hierarchical
models as their input concept hierarchy.
There have been some approaches [15, 19, 20, 29] that

mine hierarchical information for a query. In the present

Figure 2: An example of hierarchical subtopic tree.

study, we use Google suggestions as the source of hierarchi-
cal subtopics, following previous work [12, 13, 30]. We will
explore our own subtopic mining methods in future work.

3. HIERARCHICAL DIVERSIFICATION

3.1 Hierarchical Intents
As mentioned earlier, most intent-aware diversification al-

gorithms model user intents as a group of subtopics and
boost diversity based on them. In this paper, we propose to
present subtopics in a hierarchical structure.
Formally, we use Tq = {t1, t2, ...} to indicate a set of first-

level subtopics {ti1} for query q where i1 = 1, 2... is the
position of subtopic ti1 in Tq. For subtopic ti1 , we use Ti1 =
{ti1,1, ti1,2, ...} to denote a set of its child subtopics {ti1,i2}.
For each subtopic ti1,i2 ∈ Ti1 , i2 is the relative index of
subtopic ti1,i2 within all child subtopics of ti1 . To generalize,
we use ti1,.,ij to denote a subtopic at level j and use Ti1,.,ij

to denote a set of its child subtopics. ti1,.,ij+1 ∈ Ti1,.,ij and
ti1,.,ij+1 is a specific child subtopic of ti1,.,ij at level j + 1.

Figure 2 shows an example of the hierarchical subtopics
in two levels. The first level contains two subtopics t1, t2
and the second level has four subtopics t1,1, t1,2, t2,1, t2,2.
t1,1 and t1,2 are child subtopics of t1, and t2,1 and t2,2 are
child subtopics of t2. Here exists T1 = {t1,1, t1,2} and T2 =
{t2,1, t2,2}.

Let us reuse the example topic “defender” in Figure 1 to
illustrate the process. The subtopic“defender windows”con-
tains three child subtopics: “defender windows home” shows
users want the homepage of the software, “defender windows
download” indicates the download requirement of the soft-
ware, and “defender windows problems” denotes users are
interested in the problems of the software. Similarly, the
first-level subtopics “defender arcade game” and “defender
land rover” have their own second-level child subtopics.
It is worth noting that term level diversification [13] also

indicates a subtopic by a set of terms ti = {t1i , t2i , ., tji , ...}.
They treat each tji as an independent subtopic, and inte-
grate them together to build a larger flat term level subtopics

{t11, t21, ..., t|t1|1 , ..., t1n, t
2
n, ..., t

|tn|
n }. Its diversification algorith-

m is not aware of the relationship between tji and ti, and the
relationship between two terms. In contrast, we maintain
the subtopics in hierarchy structure and diversify search re-
sults based on these hierarchical subtopics.

For a given query q, we use R = {d1, d2, ..., dm} to de-
note its initial ranked documents set. For traditional di-
versification algorithms that use a flat list of subtopics, we
use T = {t1, t2, ..., tn} to denote subtopics of the query.
Let P (d|q) be the probability that document d is relevan-
t to query q, P (d|t) indicate the probability that d satisfies
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subtopic t, and P (t|q) denote the importance of subtopic
t for query q. Existing diversification algorithms use T ,
P (d|q), P (d|t), and P (t|q) to select a list of diversified docu-
ments D out of R. Similarly, for hierarchical diversification,
we define the following probabilities:

P(ti1,.,ij+1 |ti1,.,ij ). P (ti1,.,ij+1 |ti1,.,ij ) is the importance of
a subtopic ti1,.,ij+1 with respect to its parent subtopic ti1,.,ij .
We assume that ti1,.,ij is fully covered by its child subtopic
set Ti1,.,ij and each of the child subtopic is independent to
each other. Hence we have:

∑

ti1 ,.,ij+1
∈Ti1 ,.,ij

P (ti1 ,.,ij+1 |ti1 ,.,ij ) = 1

In Figure 2, we have P (t1,1|t1)+P (t1,2|t1)=1 and P (t2,1|t2)+
P (t2,2|t2)=1.

P(ti1,.,ij |q). P (ti1,.,in |q) is the importance of subtopic ti1,.,ij
with respect to the query q. The way of calculating P (ti1,.,ij |q)
may vary in different applications. If the importance of leaf
subtopics is known (for example, when parent subtopics are
generated by clustering child subtopics), we can update the
importance of their ancestors by iteratively summing up the
importance of child subtopics, i.e., we have:

P (ti1 ,.,ij |q) =
∑

ti1 ,.,ij+1
∈Ti1 ,.,ij

P (ti1 ,.,ij+1 |q) (1)

In some other cases, we may just know the importance
of the first-level subtopics. For example, when building the
hierarchy subtopics based on Google suggestion, we need to
first retrieve first-level subtopics, and then retrieve second-
level subtopics by issuing the first-level subtopics as queries.
In this case, we may calculate the weight of each child subtopic
by using Bayes’s formula:

P (ti1 ,.,ij+1 |q) = P (ti1 ,.,ij |q) · P (ti1 ,.,ij+1 |ti1 ,.,ij )
In Figure 2, if P (t1|q) is given, P (t1,1|q)=P (t1|q) ·P (t1,1|t1),
P (t1,2|q)=P (t1|q) · P (t1,2|t1). If P (t1,1|q) and P (t1,2|q) are
known, P (t1|q)=P (t1,1|q) + P (t1,2|q).

P(d|ti1,.,ij ). P (d|ti1,.,ij ) is the probability that document d
satisfies ti1,.,ij . P (d|ti1,.,ij ) = P (d|ti1,.,ij , q) because we as-
sume P (q|ti1,.,ij ) = 1. We assume that leaf subtopics ti1,.,in
are usually represented as words or phrases, and we can di-
rectly calculate P (d|ti1,.,in) on leaf subtopics using language
model or other retrieval model. For non-leaf subtopics, in-
stead of words or phrases, they may be organized as groups
of their child subtopics (e.g., when second-level subtopics are
Google suggestions, and the first-level subtopics are cluster-
s of these suggestions). In this case, we use a bottom-up
method to recursively calculate P (d|ti1,.,ij ) for a subtopic
ti1,.,ij based on its child subtopics Ti1,.,ij as follows:

P (d|ti1,.,ij ) = 1−
∏

ti1,.,ij+1
∈Ti1,.,ij

(1− P (d|ti1,.,ij+1)) (2)

where (1− P (d|ti1,.,ij+1)) is the probability that d dose not
satisfy ti1,.,ij+1 . The product denotes the probability that
d fails to satisfy every child subtopic for ti1,.,ij . One minus
that product equals the probability that d will satisfy at
least one child subtopic ti1,.,ij+1 within Ti1,.,ij .

3.2 Hierarchical Diversification Algorithms

3.2.1 Topic novelty model
The topic novelty model, inspired by MMR [2], is a widely

used framework in diversification. It considers both the rel-
evance between the document and the query, and the topic
diversity of the document among the selected documents.
It iteratively selects a next best document d that is rele-
vant to query q and can maximize the diversity of selected
documents D. The formulation of the model is as below.

d∗ = arg max
d∈R\D

(1− λ) · P (d|q) + λ · Φ(d,D) (3)

Different probabilistic models are proposed to measure
the diversity Φ(d,D) in previous work [1, 3, 30]. We select
xQuAD, one of the state-of-the-art diversification method-
s, to adapt a diversity model to use hierarchical structured
subtopics. xQuAD explicitly estimates the diversity of a
document by calculating the coverage of matched subtopics.

Φ(d,D) =
∑

t∈Tq

[P (d|t) · P (t|q) ·
∏

d′∈D

(1− P (d′|t))] (4)

In the above equation, (1−P (d′|t)) indicates the probability
that an existing document d′ does not satisfy t. The prod-
uct shows the probability that all the selected documents D
fail to satisfies t. Summing up over all subtopics, weighted
by P (t|q), the diversity is the probability that d covers the
subtopics while the existing document list D fail to satisfy.

However, Equation (4) is designed for the subtopics formed
as a flat list, which may fail when real user intents are hi-
erarchical. We take the query intents shown in Figure 2 as
an example. Assume there are four documents: d1 and d2
relevant to t1,1, d3 relevant to t1,2, and d4 relevant to t2,1.
One of the ideal rank lists is (d1 → d4 → d3 → d2) and
the diversity is maximized within the top three results. If
we just use the first-level subtopics in xQuAD, the returned
diversified rank list might be (d1 → d4 → d2 → d3). In the
third iteration, it fails to distinguish the difference between
d2 and d3 because both are relevant to t1. If we just use the
second-level subtopics in xQuAD, the resulting list might
be (d1 → d3 → d4 → d2). In this case, it assumes that d3
and d4 are equally important because both can offer a new
subtopic, but in fact, d4 is better because both d3 and d1
belong to subtopic t1.

To solve the above problem, we adapt xQuAD so that it
can handle hierarchical subtopics. We propose HxQuAD, a
hierarchical xQuAD model, to explicitly model result diver-
sity based on the hierarchical subtopics. Specifically, at each
level j of the hierarchical subtopic tree, HxQuAD estimates
result diversity by:

Φ(d,D, j) =
∑

|i1,.,ij |=j

[P (d|ti1,.,ij ) · P (ti1,.,ij |q) ·
∏

d′∈D

(1− P (d′|ti1,.,ij ))]

(5)
Here |i1, ., ij | = j means ti1,.,ij is a subtopic at level j.
P (d|ti1,.,ij ) and P (ti1,.,ij |q) estimate the probabilities that
d satisfies ti1,.,ij and ti1,.,ij satisfies q, and we have

P (d|ti1,.,ij ) = 1−
∏

ti1,.,ij+1
∈Ti1,.,ij

(1− P (d|ti1,.,ij+1))
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which is the same as Equation (2). This model evaluates the
importance of document d based on whether it can improve
overall diversity in terms of the subtopics at level j.
We then combine these components, and evaluate the

overall importance of a document in terms of all levels with-
in the hierarchy. A parameter α is introduced to control
the granularity of subtopics that the diversification tends to
optimize for. We have:

Φ(d,D) = α · Φ(d,D, 1) + (1− α) · Φ(d,D, 2)+

(1− α)2

α
· Φ(d,D, 3) + ...+

(1− α)n−1

αn−2
· Φ(d,D, n)

(6)

Here α ∈ (0, 1] and α = 0.5 indicates that all the subtopic
levels are equally weighted. A value larger than 0.5 means
that the algorithm tends to diversify result based on coarse
subtopics; whereas a value lower than 0.5 indicates that it
provides fine-grained diversify. Specially, if α = 1, then it
only uses the first-level subtopics; whereas, if α is close to
0, the model tends to take the leaf subtopics. Note that α
could be 0 if there are only two levels in hierarchy.
In summary, HxQuAD extends xQuAD to hierarchical

subtopics by redefining a multi-level diversity function. Be-
sides balancing the relevance and diversity by parameter λ,
we use a parameter α to control the impact of subtopics at
different depth.

3.2.2 Topic proportionality model
Instead of considering diversity of subtopics and docu-

ments at the same time, the topic proportionality based di-
versification model selects subtopics and documents sepa-
rately. At each iteration, the algorithm first selects the best
subtopic based on the proportionality strategy, and then
finds the most relevant document optimized for the selected
subtopic.
PM2 [12] is one of the state-of-the-art topic proportional-

ity based diversification algorithms. It considers the diver-
sification problem as assigning seats to members of compet-
ing political parties and follows a highest quotient (Sainte-
Lague) method to select subtopics as allocating seats. In the
beginning, PM2 computes the quotient qti for each subtopic
ti by the Sainte-Lague formula1.

qti =
wi

2si + 1
(7)

To maintain the proportionality of the subtopic distribu-
tion, PM2 assigns the subtopic with the largest quotient as
the selected subtopic ti∗ . Then, it calculates the diversity
function Φ(d,D, t∗) to find the document d∗ that is most
relevant to ti∗ and relatively relevant to other subtopics.

d∗ = arg max
d∈R\D

Φ(d,D, t∗)

where

Φ(d,D, t∗) = λ ·qti∗ ·P (d|ti∗)+(1−λ) ·
∑

i �=i∗
qti ·P (d|ti) (8)

After document d∗ is selected, to punish its highly relevant
subtopics, PM2 increases the “portion” of occupied seats si
for each subtopic ti by its normalized relevance to d∗.

si = si +
P (d∗|ti)∑

tj∈Tq
P (d∗|tj) (9)

1Sainte-Lague: http://www.elections.org.nz/voting/
mmp/sainte-lague.html

The algorithm repeats the above process to iteratively select
next best documents from R to D.

In this paper, we modify the framework of PM2 to adap-
t hierarchical subtopics and propose the hierarchical PM2
model (HPM2). HPM2 maintains the basic idea of find-
ing the best document based on the preselected subtopic by
proportionality. Moreover, since each level of hierarchical
subtopics may contain different diversity information, HP-
M2 selects one best subtopic for each level of the subtopic
tree, and combine them together to find the best document.
Considering Figure 2 as an example, we may select t1 with
max quotient from the first-level and t1,1 with max quotient
for the second-level, and find the best document based on
them. Note that we may choose t1 and t2,1 sometimes, as
the best subtopics are selected independently.
First of all, HPM2 computes the quotient values for the

subtopics in each level, respectively. For the subtopic ti1,.,ij
at level j, the quotient is similarly formulated as Equa-
tion (7). Note that P (ti1,.,ij |q) is the probability that ti1,.,ij
satisfies q.

qti1,.,ij =
P (ti1,.,ij |q)
2si1,.,ij + 1

(10)

Comparing all the quotients of the subtopics at level j,
HPM2 selects the best subtopic t∗i1,.,ij with max quotient

value qt∗i1,.,ij . The best subtopics t∗i1 , t
∗
i1,i2 , ..., t

∗
i1,.,in are

respectively chosen from level 1, 2, ..., n in hierarchy. HPM2
calculates the document diversity for each level of hierarchi-
cal subtopics and combines all to select the best document.
For level j in the hierarchical subtopics, since t∗i1,.,ij is the

preselected subtopic at level j, according to the diversity
definition in PM2, a document is more diverse if it is relevant
to t∗i1,.,ij and fairly related to other subtopics of this level.

Therefore, we define Φ(d,D, t∗i1,.,ij ) as:

Φ(d,D, t∗i1,.,ij ) = λ · qt∗i1,.,ij · P (d|t∗i1,.,ij ) +
(1− λ) ·

∑

tk �=t∗i1,.,ij
,|k|=j

qtk · P (d|tk) · P (tk|t∗i1,.,ij )

(11)
Here P (tk|t∗i1,.,ij ) is used to model the dependency between

tk and the selected subtopic t∗i1,.,ij . We use it because treat-
ing all the unselected subtopics equally is not fair in the
hierarchy. A close subtopic t, which may share common
parent, grandparent, or ancestor with t∗, is more related to
t∗ than other subtopics. For instance, if t1,1 is the select-
ed subtopic, t1,2 is usually more semantically related to t1,1
than t2,1 and t2,2. So we should assign a higher weight to
t1,2 than t2,1 and t2,2 in Equation (11). We use the following
function to evaluate the weight of a subtopic based on its
distance to the selected subtopic.

P (ti1,.,ij |t∗i1,.,ij ) =
2j − dis(ti1,.,ij , t

∗
i1,.,ij ) + 1

2j
(12)

where dis(t, t∗) is the length of the path for moving from t to
t∗. Since both subtopics are at level j, the maximal distance
between t and t∗ is 2j. It is used to normalize the distance.
Considering the example in Figure 2, we have P (t2|t1) = (2 ·
1−2+1)/(2·1) = 0.5, P (t1,1|t1,2) = (2·2−2+1)/(2·2) = 0.75
and P (t2,1|t1,2) = (2 · 2− 4 + 1)/(2 · 2) = 0.25.
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Based on Equation (11), we further combine all levels, and
find the best document d∗ by the following formula.

d∗ = arg max
d∈R\D

α · Φ(d,D, t∗i1) + (1− α) · Φ(d,D, t∗i1,i2)+

(1− α)2

α
· Φ(d,D, t∗i1,i2,i3) + ...+

(1− α)n−1

αn−2
· Φ(d,D, t∗i1,.,in)

(13)
Similar to Equation (6), parameter α ∈ (0, 1] is used to
control the impact of subtopic granularity.
At last, HPM2 updates the occupied seat si1,.,ij for the

subtopic ti1,.,ij based on the selected document d∗ as follows.
Note that the update is respectively done for each level in
hierarchy, as the best subtopic is selected at each level.

si1,.,ij = si1,.,ij +
P (d∗|ti1,.,ij )∑
|k|=j P (d∗|tk) (14)

In short, HPM2 selects each best subtopic by proportion-
ality, finds the document based on selected subtopics and
updates the occupied seats by the chosen document, follow-
ing the steps of PM2. In addition, HPM2 performs subtopic
selecting and seats updating at each level of the hierarchi-
cal subtopics and finds the best document by considering
n selected subtopics at the same time. It uses a distance
function to control the influence of the unselected subtopics
by considering their distances to selected subtopics.

4. EXPERIMENTAL SETUP

4.1 Datasets
We experiment with the proposed algorithms on four topic

sets provided by TRECWeb Tracks from 2009 [6] to 2012 [7].
Every topic set contains 50 topics, each of which includes
three to eight subtopics. Topics 95 and 100 in the TREC
2010 topic set were removed as they lack diversity relevance
judgments. Following the official task definitions, we use the
ClueWeb09 [10] document collection for the four topic sets.
We merge the four datasets into one and name it as TREC
in this paper.
For each topic, we retrieve top 1,000 documents using the

batch search service provided by Lemur project2. Similar to
existing approaches [12, 13], we remove the documents with
spam score larger than 70 using the Waterloo Spam Filter3

for ClueWeb09. We take these filtered documents as our
initial non-diversified ranking results, and conduct our ex-
perimental results on top 50 documents as existing work has
found that both xQuAD and PM2 achieve their best perfor-
mance when using 50 documents [12]. We estimate the rele-
vance between documents and topics by the language model
used in Lemur2. And we use the same model to calculate
the relevance between documents and subtopics.
In addition, we use the dataset provided by the IMine

(Intent Mining) task in NTCIR-11 [22]. We use the Chi-
nese topic set which is comprised of 18 clear queries and 32
ambiguous or broad queries, and name this dataset as NT-
CIR in this paper. We evaluate the algorithms using the
32 ambiguous or broad queries, as diversity relevance judg-
ments are not provided for the clear queries. We use the

2Batch Service Clueweb09: http://boston.lti.cs.cmu.
edu/Services/clueweb09_batch/
3Waterloo Spam Filter: http://plg.uwaterloo.ca/
~gvcormac/clueweb09spam/

official non-diversified baseline retrieval results from the So-
gouT20084 corpus provided by the organizers. Note that, in
contrast to the TREC data, IMine task provides two-level
human annotated subtopics and we can evaluate diversity
using both coarse-grained and fine-grained search intents.

4.2 Evaluation Metrics
We use ERR-IA [4], α-NDCG [8], and NRBP [9], which

are official evaluation metrics at TREC Web Track, to eval-
uate result diversity. They measure the diversity of a result
list by explicitly rewarding novelty and penalizing redun-
dancy observed at every rank. We use the same parameters
as those used in official TREC tasks, and hence per-subtopic
graded relevance assessments are treated as binary. In addi-
tion, we use D�-measures [28], the primary metric that used
in NTCIR IMine task, which actually utilizes graded diver-
sity relevance judgments. All metrics are computed based
on the top 20 ranking results, consistent with the official
tasks in TREC 2010-2012. Moreover, we use the two-tailed
paired t-test for statistically significance testing and report
a significant difference if the p-value is lower than 0.05.

4.3 Generation of hierarchical subtopics
Similar to previous work [12, 30], we use query suggestions

extracted from Google search engine as subtopics (as shown
in Figure 1). To avoid Google’s personalized suggestions,
we clean the cookies and set the location to United States
before query suggestion crawling.
For each topic, we collect its query suggestions from Google

as the first-level subtopics. To generate subtopic hierar-
chy, we further issue the first-level subtopics as queries to
Google and retrieve their query suggestions as the second-
level subtopics. Sometimes Google fails to provide sugges-
tions for some queries. When a topic has no suggestion,
we view this topic as invalid and omit it. If a first-level
subtopic from a valid topic has no suggestion, we add itself
as its second-level subtopic to ensure the two-level struc-
ture. Finally, we collect 1,696 first-level subtopics and 10,527
second-level subtopics for 194 queries. We only consider
two-level hierarchical subtopics in this paper, and leave the
investigation of using third and deeper levels to future work.
Consistent with existing research [30, 12], we assume a u-

niform probability distribution for all the first-level subtopic-
s, i.e., P (ti|q) = 1

|Tq | where Tq is the set of the first-level

subtopics. We also assume a uniform probability distribu-
tion for the second-level subtopics with respect to their par-
ent subtopics. We use Equation (1) to calculate the impor-
tance of a second-level subtopic with respect to the query.
For example, for the jth second-level subtopic ti,j of the
ith first-level subtopic ti, its importance P (ti,j |q) is 1

|Tq |∗|Ti|
where |Ti| is the count of second-level subtopics of ti.

4.4 Baseline Models
We compare our proposed models with the following base-

line approaches: the non-diversified baseline ranking (Base-
line), xQuAD, PM2, TxQuAD, TPM2, and ConceptH. We
already introduced xQuAD and PM2 in Section 3.2 and
we recall that our hierarchical diversification models are ex-
tended from them. Term level diversification models, viz.,
TxQuAD andTPM2 [13], split the original subtopics (used
by xQuAD and PM2) into terms and use these terms as

4SogouT2008: http://www.sogou.com/labs/dl/t-e.html
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Table 2: Performance comparison on TREC 2009-
2012. The best result is in bold. Statistically signif-
icant differences between the hierarchical methods
(HxQuAD and HPM2) and the baseline methods
(xQuAD, TxQuAD, PM2, TPM2, and ConceptH)
are marked with ∗, �, �, ◦, †, respectively.

ERR-IA α-nDCG NRBP D�-nDCG
Baseline .2630 .3610 .2238 .4124
xQuAD∗ .2842 .3822 .2465 .4109
TxQuAD� .2792 .3835 .2396 .4189
PM2� .2952 .3990 .2548 .4289
TPM2◦ .2805 .3895 .2385 .4256
ConceptH† .3002 .4064 .2607 .4366

HxQuAD .3206∗�†�◦ .4229∗��◦ .2845∗�†�◦ .4378∗��◦
HPM2 .3235∗�†

�◦ .4234∗�
�◦ .2880∗�†

�◦ .4381∗�
�◦

their subtopics. In order to maintain the consistency of the
subtopics, we did not use the DSPApprox method intro-
duced in [13] that extracts terms from search results. Con-
ceptH [41] exploits concept hierarchies to find flat query
subtopics and infers subtopic relations in traditional diversi-
fication by hierarchical similarities of subtopics. We directly
take our subtopic hierarchy (See Subsection 4.3) as the con-
cept hierarchy in ConceptH, which means that ConceptH
shares the same subtopic hierarchy with HxQuAD and HP-
M2. All the baseline methods have a parameter λ that re-
quires tuning. Our hierarchical models have two parameters
to tune: the traditional parameter λ and the hierarchical
weight parameter α. We use a 5-fold cross validation to
tune these parameters in terms of ERR-IA@20 on TREC
data and NTCIR data, respectively.
The hierarchical subtopics and all runs can be found on

the website: http://www.playbigdata.com/dou/hdiv .

5. EXPERIMENTAL RESULTS

5.1 Overall results
We compare our models with the baseline approaches. For

the baseline models, we use the first-level subtopics which
is a common approach in existing work [12, 13, 30]. The
results are shown in Table 2 and Table 3. We find that:
(1) The hierarchical diversification models, i.e., HxQuAD

and HPM2, outperform all baseline methods on the TREC
2009-2012 dataset. Table 2 shows that HxQuAD and HPM2
have statistically significant improvements in terms of ERR-
IA, α-nDCG, NRBP, and D�-nDCG (p<0.05 with two-tailed
paired t-tests). Specifically, HPM2 outperforms xQuAD,
TxQuAD, and TPM2 by more than three hundredths; out-
performs PM2 by more than two hundredths; outperforms
ConceptH by more than one hundredth, in terms of ERR-IA,
α-nDCG, and NRBP.
(2) As mentioned before, the diversity on the NTCIR

IMine dataset can be evaluated either on the coarse-grained
intents or on the fine-grained intents. Table 3 shows that
HxQuAD and HPM2 outperform all baseline algorithms in
terms of ERR-IA, α-nDCG, and NRBP at either the coarse-
grained level or the fine-grained level, though their improve-
ments are not statistically significant. Please note that there
are only 32 topics on NTCIR data. The results indicate that
the hierarchical models provide more diverse results than the

Table 3: Performance comparison on NTCIR data.
ERR-IA α-nDCG NRBP D�-nDCG

(a) Evaluated by using coarse-grained intents
Baseline .3044 .4508 .2644 .3952
xQuAD∗ .3146 .4666 .2682 .4079
TxQuAD� .3282 .4915 .2852 .4266
PM2� .3200 .4865 .2702 .3596
TPM2◦ .3239 .5115 .2699 .4493
ConceptH† .3203 .4807 .2731 .4185
HxQuAD .3436 .4901 .3064 .4094
HPM2 .3449 .5150 .2975 .4507
(b) Evaluated by using fine-grained intents
Baseline .1596 .3497 .1338 .2782
xQuAD∗ .1669 .3616 .1396 .2853
TxQuAD� .1717 .3836 .1458 .2929
PM2� .1641 .3695 .1348 .2825
TPM2◦ .1609 .3929 .1222 .3135
ConceptH† .1684 .3652 .1403 .2837
HxQuAD .1831 .3823 .1598 .2881
HPM2 .1831 .3994 .1543 .3081

baseline models when users are interested in either coarse-
grained subtopics or fine-grained subtopics.
(3) Both HxQuAD and HPM2 significantly outperform

their corresponding models xQuAD, TxQuAD, PM2, and
TPM2 on TREC data, and outperform their corresponding
models by more than one to three hundredths on both levels
of NTCIR data, in terms of ERR-IA, α-nDCG, and NRBP.
This indicates that utilizing hierarchical subtopics, even just
containing two levels, could help promote result diversity
than traditional subtopics formed as a flat list.
(4) Recall that ConceptH leveraged subtopic hierarchies to

calculate subtopic dependencies for traditional flat subtopic-
s. The results show that ConceptH outperforms all the oth-
er baseline models on TREC data. However, both HxQuAD
and HPM2 outperform ConceptH in terms of all metrics.
They significantly outperform ConceptH in terms of ERR-
IA and NRBP on TREC data, and outperform ConceptH by
more than one to three hundredths on both levels of NTCIR
data, in terms of ERR-IA, α-nDCG, and NRBP. Therefore,
when using subtopic hierarchies in diversification, propos-
ing hierarchical frameworks for hierarchical subtopics works
better than improving traditional frameworks on subtopic
relations for flat subtopics.
(5) Consistent with the recent work [12], PM2 performs

slightly better than xQuAD in terms of all metrics on the
TREC dataset in Table 2. And they perform similarly in the
coarse-grained intent of the NTCIR data in Table 3. Ter-
m level models TxQuAD and TPM2 perform differently on
different datasets. On the TREC data, they underperfor-
m their corresponding models xQuAD and PM2 in terms
of most metrics. But on NTCIR IMine data, they outper-
form their corresponding models in terms of most metrics,
and are the top performers in some cases. Based on the
study made by Dang et al. [13], they work very closely to
their corresponding models. After analyzing the results, we
found that term level models do not work well on topics
containing phrases. For instance, considering topic number
165 “blue throated hummingbird” in TREC 2012, it has a
subtopic “blue throated hummingbird picture” meaning to
find the pictures of the specific bird. Term level models
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in our experiments use the split terms “blue”, “throated”,
“hummingbird,” and “picture” as the subtopics, which may
select some noisy irrelevant documents relevant to “blue” or
“picture”. Dang et al. [13] claimed that they could identify
phrases within the subtopics (for example, split the above
example subtopic to “blue throated hummingbird” and “pic-
ture”), which may help improve the performance of term-
level diversification algorithms. However, we used the Stan-
ford Tokenizor5 and it failed to detect such kinds of phras-
es. This might be one of reasons why TxQuAD and TPM2
do not work well in our experiments. For the NTCIR da-
ta, we use the ICTCLAS Chinese tokenizer6. The tokenizer
can recognize named entities and phrases, and may generate
better term-level subtopics than on TREC data.

5.2 Impact of using different levels of subtopic-
s

The analysis so far has shown that the proposed hierarchi-
cal models using hierarchical subtopics outperform the base-
line models with flat-formed subtopics (xQuAD, TxQuAD,
PM2, and TPM2). There are at least two possible explana-
tions for it. The first is that our two-level hierarchical ap-
proach for diversification is indeed effective. The second is
that our approach outperformed the baseline models simply
because we used extra subtopics (i.e., second-level subtopic-
s) while the baseline models only used first-level subtopics.
To clarify this problem, we experiment with baseline mod-

els using different levels of subtopics. We want to investi-
gate whether our models still outperform baseline models
with the same subtopics in a flat list. For fair compari-
son, we provide baseline models exactly the same subtopics
as hierarchical models, by organizing hierarchical subtopic-
s into a flat list, and set a uniform weight for them. We
use xQuAD1st , xQuAD2nd , and xQuADall to denote using
first-level subtopics, second-level subtopics, and all subtopic-
s (merged by the obtained suggestions in two levels) for
xQuAD model. Similar symbols are used for other models.
Recall that, in hierarchical models, the impact of first-

level subtopics and second-level subtopics are controlled by
a parameter α according to Equation (6) and Equation (11).
When α = 1, only the first-level subtopics are used in hi-
erarchical models. When α = 0, hierarchical models only
use the second-level subtopics. Due to space limitation of
the paper, we only report the results on the TREC dataset.
The results are shown in Table 4 and Table 5. The best re-
sults are in bold, statistically significant differences between
hierarchical methods and their corresponding methods are
respectively marked in the upper right corner, and all related
parameters are tuned by 5-fold cross validations.

5.2.1 Using first-level subtopics only
Table 4 and Table 5 show that, by utilizing first-level

subtopics, hierarchical models outperform all their corre-
sponding models in terms of ERR-IA, α-nDCG, and NRBP.
Specifically, HxQuAD1st significantly outperforms xQuAD1st

in terms of all metrics.
The difference between hierarchical models and their coun-

terparts is the relevance estimation P (d|ti) between
the document d and the first-level subtopic ti. In tra-
ditional diversification models, i.e., xQuAD1st and PM21st ,

5Stanford Tokenizor: http://nlp.stanford.edu/
software/tokenizer.shtml
6ICTCLAS: http://www.ictclas.org/

Table 4: Performance comparison of HxQuAD and
its corresponding methods using different subtopics.

ERR-IA α-nDCG NRBP D�-nDCG
(a) Using first-level subtopics only
xQuAD∗

1st .2842 .3822 .2465 .4109
TxQuAD�

1st .2792 .3835 .2396 .4189

HxQuAD†
1st .3054∗� .4041∗ .2683∗ .4259∗

(b) Using second-level subtopics only
xQuAD�

2nd .2956 .3940 .2609 .4207
TxQuAD◦

2nd .2850 .3903 .2452 .4171

HxQuAD‡
2nd .3145∗��

�◦ .4160∗��
�◦• .2782∗�

�◦ .4334∗�
�◦•

(c) Using all subtopics (both two levels)
xQuAD�

all .2948 .3930 .2572 .4193
TxQuAD•

all .2898 .3930 .2508 .4185

HxQuADall .3206∗��†
�◦•‡ .4229∗��†

�◦•‡ .2845∗��†
�◦•‡ .4378∗��†

�◦•‡

the probability that document d satisfies subtopic ti, i.e.,
P (d|ti), is calculated by language model [30]. For hierar-
chical models, only the relevances between documents and
second-level (leaf) subtopics are directly computed as tra-
ditional methods. The relevances between documents and
first-level (non-leaf) subtopics are estimated by P (d|ti) =
1−∏

ti,j∈Ti
(1−P (d|ti,j)) as Equation (2) in Subsection 3.1.

This design makes our hierarchical models more flexible to
handle different subtopic mining algorithms, which may con-
tain virtual subtopics at the non-leaf levels in hierarchy.
The results indicate that using the relevance estimation

between documents and subtopics in hierarchical models,
makes the results more diverse than the traditional way.
One of the possible reasons is that, by involving the child
subtopics into estimation, finding a relevant document for
the subtopic becomes finding a relevant document for its
child subtopics. The document related to more child second-
level subtopics will be viewed as more relevant to the par-
ent first-level subtopic. For example, a first-level subtopic
t1 has two relevant documents d1, d2. Traditional models
find that the documents’ relevances are P (d1|t1) = 0.8 and
P (d2|t1) = 0.7, and think d1 is more relevant to t1. Hierar-
chical models check the child second-level subtopics of t1 and
find that d1 is related to one child subtopic P (d1|t1,1) = 0.7
and d2 is related to two child subtopics P (d2|t1,1) = 0.6,
P (d2|t1,2) = 0.4. Then hierarchical models treat d2 as more
relevant to t1 as P (d2|t1)=1− (1− 0.6) ∗ (1− 0.4)=0.76 and
P (d1|t1)=1 − (1 − 0.7)=0.7. In fact, since d2 covers more
child subtopics, it contains more diversity information than
d1 and should be valued more in diversification. By utilizing
the child subtopics to find relevant documents for the first-
level subtopics, hierarchical models increase the relevances
for the documents covering more child subtopics, and pro-
vide better result diversity than traditional models.

5.2.2 Using second-level subtopics only
When adopting second-level subtopics, hierarchical mod-

els still outperform all their corresponding models in terms of
ERR-IA, α-nDCG, and NRBP, as shown in Table 4 and Ta-
ble 5. In particular, HxQuAD2nd significantly outperforms
xQuAD2nd in terms of ERR-IA and α-nDCG, and HPM22nd
outperforms PM22nd by more than one hundredth in terms
of ERR-IA, α-nDCG, and NRBP.

The difference between hierarchical models and their coun-
terparts is the relevance probability P (ti,j |q) between
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Table 5: Performance comparison of HPM2 and its
corresponding methods using different subtopics.

ERR-IA α-nDCG NRBP D�-nDCG
(a) Using first-level subtopics only
PM2∗1st .2952 .3990 .2548 .4289
TPM2�1st .2805 .3895 .2385 .4256

HPM2†1st .3070� .4055 .2693� .4280
(b) Using second-level subtopics only
PM2�2nd .3054 .4104 .2670 .4380
TPM2◦2nd .2847 .3925 .2435 .4206

HPM2‡2nd .3172∗�
�◦• .4189∗�†

�◦• .2806∗�
�◦• .4373∗†�◦•

(c) Using all subtopics (both two levels)
PM2�all .3022 .4072 .2620 .4353
TPM2•all .2879 .3948 .2485 .4211

HPM2all .3225∗��†
�◦•‡ .4234∗��†

�◦•‡ .2880∗��†
�◦•‡ .4381∗†

�◦•

the query q and the second-level subtopic ti,j . Re-
call that, in subtopic hierarchy, we set a uniform proba-
bility distribution for the first-level subtopics of the query,
i.e., P (ti|q) = 1

|Tq | where |Tq| is the count of the first-level

subtopics (See Subsection 4.3). And we set a uniform weight
for each second-level subtopic with respect to its parent first-
level subtopic, i.e., P (ti,j |ti) = 1

|Ti| , where |Ti| is the count

of the child subtopics in the first-level subtopic ti. Then
we calculate the relevance probabilities between queries and
second-level subtopics by Equation (1) in Subsection 3.1,
i.e., P (ti,j |q) = P (ti,j |ti) ∗ P (ti|q) = 1

|Tq |∗|Ti| . On the

other side, in traditional models, since their subtopics are
in a flat list, they set a uniform relevance probability dis-
tribution for the second-level subtopics of the query, i.e.,
P (ti,j |q) = 1∑ |Ti| , where

∑ |Ti| indicates the total number

of all the second-level subtopics. For example, consider top-
ic number 3 “getting organized” in TREC 2009, which has
9 first-level subtopics and 52 second-level subtopics in to-
tal. In traditional models, all second-level subtopics share
the same relevance to the query P (ti,j |q) = 1

52
= 0.019. In

hierarchical models, for a first-level subtopic t1, “getting or-
ganized at work”, it has 9 child second-level subtopics and
their relevance probabilities to the query are P (t1,j |q) =
1
9
∗ 1

9
= 0.012; for another first-level subtopic t2, “getting

organized for college”, it has 3 child second-level subtopics
whose relevance probabilities to the query are P (t2,j |q) =
1
9
∗ 1

3
= 0.037.

The results indicate that hierarchical models assign bet-
ter relevance probabilities for second-level subtopics with re-
spect to queries than traditional models with flat subtopic-
s. One possible reason is that, many second-level subtopics
may come from some coarse first-level subtopics, so the doc-
uments related to these coarse subtopics may be overvalued
in traditional models who treat all second-level subtopic-
s as equally important. On the contrary, by passing the
relevance of queries uniformly from first-level subtopics to
second-level subtopics, hierarchical models control the total
contribution of second-level subtopics from coarse first-level
subtopics in diversification. Continue the upper example, as-
sume that document d1 is highly related to all second-level
subtopics from t1, P (d1|t1,i)=1 (i=1,2,.,9), and documen-
t d2 is highly related to all second-level subtopics from t2,
P (d2|t2,j)=1 (j=1,2,3). Traditional models think d1 is more
diverse as d1 is related to more subtopics.

∑
P (d|t1,i) ∗

P (t1,i|q)=9 ∗ 1 ∗ 0.019=0.171 >
∑

P (d|t2,j) ∗ P (t2,j |q) =3 ∗
1 ∗ 0.019=0.057. Hierarchical models find that d2 is also
important because d2 is related to more relevant subtopics.∑

P (d|t1,i) ∗ P (t1,i|q) =9 ∗ 1 ∗ 0.012=0.11 =
∑

P (d|t2,j) ∗
P (t2,j |q)=3∗1∗0.037=0.11. Accurately, d1 and d2 should be
equally important in diversity since either d1 or d2 is only re-
lated to one first-level subtopic (t1 or t2). Therefore, involv-
ing first-level subtopics in assigning relevances for second-
level subtopics is a fair choice in hierarchical models. The ex-
perimental results show that considering first-level subtopics
in estimating the relevances between subtopics and queries
is very helpful in result diversification.

5.2.3 Using all subtopics
Table 4 and Table 5 show that, by using all the subtopics,

our hierarchical models significantly outperform their corre-
sponding models in terms of ERR-IA, α-nDCG, and NRBP.
This indicate that, when considering two level subtopics in
diversification, our hierarchical models with two-level hierar-
chy are better than traditional diversification models which
merge two-level subtopics in a flat list.
Moreover, for HxQuAD and HPM2, using subtopic hi-

erarchy is always better than using single-level subtopics,
and the improvements are significant in terms of ERR-IA,
α-nDCG, and NRBP. This means that incorporating the en-
tire hierarchy is better than the sole use of a single-level of
subtopics in hierarchical models. Each level plays its own
role on diversifying search results.
The results also show that all traditional models with the

second-level subtopics outperform their counterparts with
the first-level subtopics in terms of most metrics. The im-
provements are mostly not significant, but they indicate that
the traditional models perform better by using the second-
level (fine-grained) subtopics than by using the first-level
(coarse) subtopics. In a preliminary study in TREC da-
ta, we found that there are more fine-grained or specific
subtopics than coarse or general subtopics. For example, for
the “defender” example shown in Section 1, many predefined
subtopics (including s1, s4, and s5) correspond to second-
level subtopics we extracted from the commercial search en-
gine. This means that exploiting more fine-grained subtopics
could help improve result diversity. xQuAD and PM2 per-
form worse when using all subtopics than using second-level
subtopics. One possible reason is that the merged subtopics
include many overlapped subtopics, which may involve re-
dundant documents in search results. So the second-level
subtopics is good enough for the flat-subtopic based models,
and involving the all subtopics is unnecessary and risky.
In short, our hierarchical models with subtopic hierarchy

significantly outperform all their corresponding models with
different levels of subtopics in terms of ERR-IA, α-nDCG,
and NRBP. This indicates that our two-level hierarchical
models are indeed effective in diversification.

6. CONCLUSIONS
In this paper, we argued that the user intents covered by a

query can be hierarchical. We leveraged hierarchical intents
and proposed hierarchical diversification models to promote
search result diversification. Specifically, hierarchical diver-
sification calculated the document diversity on each level of
hierarchical subtopics and combined these diversity scores
together to help select the best document. We conducted our
experiments with two-level hierarchical subtopics generated
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automatically from Google suggestions. The experimental
results showed that our approaches based on hierarchical
subtopics outperformed their counterparts with the tradi-
tional subtopics in a flat list. Even when using single-level
subtopics, hierarchical diversification also provided reason-
able benefits, as these single-level subtopics from hierarchi-
cal tree implicitly utilize hierarchical information to help
diversify search results, while the traditional diversification
algorithms use pure subtopics in a flat list without addition-
al information.
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