
Detecting and Monitoring Dynamic Content Blocks of a
Web Page by Merging its Historical Versions ∗

Shu Tang1, Zhicheng Dou2, Xing Xie2, and Jun He3

1,3Renmin University of China 2Microsoft Research
1tangshu927@gmail.com, 2{zhichdou, xingx}@microsoft.com, 3hejun@ruc.edu.cn

ABSTRACT
Nowadays, most people and organizations with websites de-
sign their own homepages to facilitate readers’ obtaining in-
formation about the entity in question. The content of these
homepages is usually divided into different areas, each of
which only contains information about one specific aspect.
Some of these areas’ pieces of information are updated over
time. It would be very convenient for browsers of the site
if we can automatically detect dynamic information areas
and trace their content. Previous studies have paid little at-
tention to homepages, and have not made full use of pages’
historical information and conducted exploration in the tem-
poral line. We build a merged tree from one page’s historical
versions. We then use it to detect dynamic content blocks,
and extract and trace their content. Experimental results
based on a large number of Web pages from diverse do-
mains show that the proposed technique is able to extract
the dynamic content blocks with a high level of accuracy.

1. INTRODUCTION
Information in homepages is often displayed as several

content blocks, as shown in the boxes in Figure 1 which is
a screenshot of the CNN homepage. There are several com-
mon characteristics between these information blocks in this
figure. Each block includes content talking about only one
aspect. Content in the figure displays as images and news
hyperlinks. Different blocks’ content seldom overlap. Ad-
ditionally, some of these blocks’ contents update over time
while others remain the same, as shown in the dashed boxes
(updated content) and solid box (unchanged content) in this
figure. We call them as dynamic blocks and static blocks re-
spectively. Furthermore, we assume that readers are more
likely to take interest in the dynamic blocks’ content while
seldom checking the static ones.
Based on these observations, we aim to automatically de-

tect the dynamic blocks by comparing the page’s historical

∗This work was done when the first author was visiting Mi-
crosoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Content blocks on CNN.com

information and help readers to monitor such content.
Works on this process have been explored in great depth

by numerous researchers. But none of them leverage multi-
ple versions of a page, nor do they focus on detecting and
monitoring dynamic blocks in the homepages’ temporal line.

Inspired by the existence of temporal changes, we aggre-
gate historical versions in a temporal line and ultimately
summarize the dynamic areas from the dynamic text or im-
age. The temporal structure fluctuation of HTML pages is
integrated together, providing a more general matching ref-
erence, allowing the corresponding blocks in the future pages
to be found with greater accuracy.

More specifically, we first build an aggregated tree which
merges the historical DOM trees of the page. Then we use
this tree to detect the dynamic content blocks. After the dy-
namic blocks’ detection, we can recommend several content
blocks to readers. For each block that the user specifies, it
is marked in the aggregated tree. Then, based on this tree,
the specific block’s content could be monitored by a designed
strategy.

2. RELATED WORK
The most popular technique of wrapper is to identify the

repeat pattern using a tree alignment algorithm. Several
adapted tree alignment methods have been proposed. One
such method is RTDM [2] (restrict top-down mapping), which
works by adding some restrictions on a traditional tree align-
ment method, detecting the template among multiple pages.
Xia et al. [5] relax the restrictions of RTDM [2] and get
better results on forum and blog pages. DEPTA [6] and
WPC [7] all focus on products list pages, identifying repeat
modes in a single page.

RoadRunner [1] works by solving the mismatches between
HTML terms to identify the repeat pattern but not tree

alignment. Other particular features either in the HTML
terms level or the vision level are studied in [3,4]. They are
used to speculate news content or partition the news page.
None of the methods mentioned above leverage multiple

versions of a page, nor do they focus on detecting and mon-
itoring dynamic blocks in the homepages’ temporal line.

3. PROBLEM STATEMENT AND SYSTEM
OVERVIEW

Since we aim to use a homepage’s historical information
to detect and trace future dynamic information, the problem
could be depicted as follows: For a given homepage, we have
its m historical versions < v1, v2, . . . , vm >, which are used
to build the merged tree, and n versions < v′1, v

′
2, . . . , v

′
n >

whose contents need to be traced and extracted. Let t1,
t2, . . . denote time. vx and v′x denote the HTML codes we
download from the web browser at time tx or t′x. Without
loss of generality, we assume that t′n > t′n−1 > . . .> t′1 > tm
> tm−1 > . . . >t1. Here “>” means the order of the time,
for example, t′1 > tm denotes time t′1 is after time tm.
Our targets are as follows: First, we integrate all the his-

torical versions into a merged tree, which is called HMT
(Historical Merged Tree). Second, by comparing informa-
tion from different versions, we can detect the dynamic con-
tent blocks. Third, for a particular block specified on the
HMT, without specifying anything in the current page, we
can extract the block’s content by comparing the current
page with the HMT. The flowchart is shown in Figure 2.

Figure 2: Flowchart of the proposed method.

In the following sections, Tx denotes the basic tree built
from vx (one historical version). HMTm denotes the HMT
built from < T1, T2, . . . , Tm >.
Note that the logical structure of Tx and HMTm is the

same. The difference between them is that Tx only contains
one historical version, whereas HMTm may contain multiple
versions.

4. OUR APPROACH

4.1 Integrating historical versions to an HMT
We begin by building a basic tree Tx for each page version

vx. In Tx, we add several extra attributes to the traditional
DOM node. Three of them are introduced here: TagName,
Index, TagAttributes. The TagName denotes the name of
an HTML element. The Index denotes the node’s unique

Figure 3: An example HMT

key. TagAttributes is a HashTable, each key-value pair of
which records one attribute’s name, and the corresponding
values of every version in this node. If the node does not
contain any attributes, then we add a “vID” attribute to it,
whose value is comprised of the versions that contains this
node. Note that here the leaf node can only be a TEXT
node or an IMG node, where “TEXT” and “IMG” both rep-
resent the node’s TagName. The “text” attribute is only
contained in the TagAttributes of the TEXT node, and the
“src” attribute is only contained in the TagAttributes of the
IMG node.

Assumed that we already have n basic trees (T1, T2, . . . , Tn),
we create the HMT in terms of algorithm 1. Basically, we
iteratively merge the next version into the existing HMT.
The merge method contains two steps: The first step is to
adopt the RTDM (restrict top-down mapping) [2] algorithm
in [2] to obtain the optimal matching structure of two trees.
Second, we adopt the following two strategies to merge Ti

to HMTi−1, and get HMTi. For a node n in Ti, 1). If
there is a node n1 in HMTi−1 which is matched with n, we
just add n’s attributes to the TagAttributes of n1. 2). If
there are not any nodes in HMTi−1 that are matched with
n, we insert n to HMTi−1 while keeping the order of hier-
archy and siblings. Ultimately, there may be some nodes in
HMTi that do not contain any information of Ti. These are
the nodes that exist in the version of <T1,. . .Ti−1>, but are
deleted in the version of Ti. An example of the merged tree
is shown in Figure 3.

Algorithm 1: CreateMergeTree

Input: BasicTree[]=T1, T2, . . . , Tn

Output: MergeTree:HMT
1 HMT1:=create(T1);
2 for i← 2 to n do
3 HMTi = merge(HMTi−1,Ti) ;
4 end
5 return HMTn;

There are several differences between RTDM [2] and our
method. In ours, let M be a mapping between two trees
[2]. For each pair (nx, ny) ∈ M , nx and ny are with the
same TagName, which means there are only nodes insertion
and removal operation, but not nodes replacement in our
method. The mapping cost is given by c = Sp + Iq +Dr +
Mv, where S denotes a subset of pairs (n′

x, n
′
y) ∈ M with

distinct TagAttributes, and p is the cost assigned to the

replacement of TagAttributes. v is defined as follows: for
each pair (nx, ny) ∈ M , v = 1 - Nx / Nsum * ξ. Here Nx

denotes the number of versions nx contains. Nsum denotes
the total number of versions already used in the merging
step, which is (i − 1) here. ξ is used to confirm v is far
less than p. Mv is added to help us to choose one of the
minimum cost mapping that contains more previous aligned
versions. Note that p is far less than q and r, which are
respectively the costs assigned to the insertion and removal
operations [2].

4.2 Detecting dynamic content blocks
After finishing the final HMT, we adopt two steps to de-

tect dynamic content blocks.
First, we detect dynamic nodes. During the merging step,

we merge the nodes which come from multiple historical
versions and match with each other. So a node is marked
to be dynamic if any version is missing in it. What’s more,
a node will also be marked as dynamic if it is a leaf node,
and its “text” or “src” attribute has different values within
the historical versions. Other nodes are marked as static.
Second, we detect dynamic content blocks. Assumed that

each block in one page can be represented as a sub-tree. For
a certain internal node nc in HMT, we define it as a block−
level − dynamic node, if and only if it meets the following
two conditions. 1) nc is a static node; 2) Ld/Lt is larger
than a predefined threshold. Here Ld denotes the sum of
text’s length in nc’s children which are marked as dynamic or
block−level−dynamic, and Lt denotes the total text length
of nc. By the time constraint, we did not deeply explore
the threshold’s value. We will do it in the future. The
reason that we did not use the number of nodes to compute
the rate is that, the text length of different nodes may be
largely different, which would result in large instability of
the threshold among different pages.
The sub-trees rooted by the block−level−dynamic nodes

serve as dynamic content blocks.

4.3 Dynamic block monitoring and extraction
We assume that one user is usually interested in one or a

few dynamic blocks on a page. After detecting all the dy-
namic content blocks from HMT, the user can simply specify
the blocks she wants to monitor. With bs denoting a par-
ticular block specified by the user, in a new page version,
we directly use the same method as what we adopt in the
tree building step. The difference is that we just match this
version with the HMT, but not merge them. Ultimately, the
sub-tree rooted by the node which is aligned with the root
of bs represents the corresponding block.
Note that, if there is not any node that is aligned with the

root of bs, it may be that there is not bs in this new page.
However there is another possibility that the root of bs in
this new page is aligned with other nodes in HMT, which
will result in missing extraction.

5. EVALUATION
In this section, we mainly test the extraction accuracy.

We will test the performance of data blocks detection in the
future. The experiment data is a set of 69 homepages manu-
ally selected from the top 100 websites ranked by Alexa.com.
Most of them change frequently. We crawl the pages every
5 hours for 50 versions (<v1, v2, . . . v50>). For each URL
in the data set, a labeler is asked to freely annotate three

Figure 4: The impact of time interval between two
versions on the two versions’ similarity

Figure 5: The impact of the number of historical
versions on the extraction accuracy.

content blocks that she likes to follow. All of the labelers
are encouraged to label the three blocks in different ranges.
The labeler annotates three blocks in the first version, and
tracks and annotates corresponding blocks in the later ver-
sions. For the versions the block does not exist in, the labeler
tags it as missing.

5.1 Experiment with page changes
We use Figure 4 to illustrate two kinds of changes hap-

pened over time in homepages: structure changes and con-
tent changes. Examples of structure changes are a piece
of breaking news is inserted or deleted, or rows are added
or deleted from a table. Content changes are the updating
of text or image. In this figure, we compute the similar-
ity between v1 and vx (x from 2 to 50). We use HMT1x

to denote the tree merged by v1 and vx. The structure
similarity is computed as follows: the number of the nodes
that both exist in v1 and vx divided by the number of total
nodes in HMT1x. And text similarity is calculated as fol-
lows: the number of the leaf nodes whose content from v1
and vx are the same divided by the total number of the leaf
nodes in HMT1x. Figure 4 shows that with the increase of
the time interval, the structure similarity changes periodi-
cally to some extent. The possible reason may be that some
web editors change their pages’ structure periodically. Be-
sides, the text similarity goes down first and then remains
stable. The static content may be blocks’ titles and other
illustrations that rarely change.

5.2 Experiment with extraction accuracy
We experiment with building the merged tree using dif-

ferent numbers of historical versions (lengths of history). In

Figure 6: The impact of time interval between the
current version and the latest historical version used
in HMT on the extraction F1

Figure 5, we use the set of <v36−HN , . . . v36−2, v36−1> to
build the HMT, and extract the content from v36. HN de-
notes the number of historical versions at each point. Figure
5 shows that when more historical versions are used, extrac-
tion precision remains high first and falls after HN greater
than 19. And the recall becomes higher. F1 reaches to
the maximum when HN is 9. A possible reason is that,
as the number of historical versions becomes more, HMT’s
structure becomes more general, but due to more and more
nodes inserted to the HMT, there are more and more match-
ing choices during the matching step, which may lower the
extraction precision. In this figure, the accuracy achieves
such a high value when HN is 1 and does not fall obviously.
The reason may be that, there are not significant changes in
our data set. We plan to test more homepages in the future.
We further experiment with the impact of the time inter-

val between the extracted page and historical versions. In
terms of the last experiment, when the number of histori-
cal versions is 9, extraction F1 tends to be higher. In this
experiment, we use <v27, v28, . . . v35> to build the HMT,
and extract the content from <v36, v37, . . . v50>. We use
t35 to represent the time of historical versions. Looking at
Figure 6, the accuracy of extraction goes down significantly
after the time interval greater than 60 hours. The testing
time may not be long enough to make larger changes hap-
pen. We plan to test out method in a longer period of time
in the future.

5.3 Strategies of rebuilding HMTs
Since the extraction accuracy would decline over time

based on the previous experiment, we need to update the
HMT if we want to achieve a reasonably accurate extrac-
tion. The process of updating should be efficient and ef-
fective enough. During the process of updating the HMT1

built from <v1, . . . , vn> to the HMT2 built from <v2, . . . ,
vn+1>, there three ways to update it. The first one is to
remove v1 from HMT1, and then merge vn+1 to HMT1; the
second way is to merge vn+1 to HMT1, and then remove
v1 from HMT1; the third way is to directly re-build the
tree from v2 to vn+1. During removing, we delete all the
information of version 1, and remove the nodes that do not
contain any versions. It is obvious that the third way would
lead to an enormous cost of time. We compute the F1-value
of extraction respectively from these three types HMT. By

Figure 7: Compare with RoadRunner

t-test, when α is 0.05, the three sets of data have no signifi-
cant difference between each of the two. So both of the first
two strategies are recommended to update the HMTs. The
average time of clean a historical version and merge a new
version is about 0.5 second.

5.4 Comparing with RoadRunner
We compare our method with RoadRunner [1]. We use

a set of historical versions <v36−HN , . . . v36−2, v36−1> to
generate the wrapper with RoadRunner, and extract the
content from v36. HN denotes the number of historical ver-
sions. The data set here are the same with what we used
in Experiment 2. We compare their results in Figure 7. It
shows that the F1 of our method is much higher than that
of RoadRunner. The possible reasons are shown as follows:
First, RoadRunner targets at the sites with a fairly regular
structure, but most homepages nowadays do not meet with
this requirement. Second, RoadRunner generates the wrap-
per by solving the mismatches during parsing, while in our
method, the overall situation is considered.

6. CONCLUSIONS
In this paper, we focus on building a merged tree from

one page’s historical versions, and using it to detect and
trace dynamic content blocks. We update the merged tree
to achieve better extraction accuracy. Experimental results
show that our proposed method is able to accurately monitor
the dynamic blocks.

7. REFERENCES
[1] V. Crescenzi, G. Mecca, P. Merialdo, et al. Roadrunner:

Towards automatic data extraction from large web
sites. In VLDB 2001.

[2] D. d. C. Reis, P. B. Golgher, A. Silva, and A. Laender.
Automatic web news extraction using tree edit
distance. In WWW 2004.

[3] J. Wang, C. Chen, C. Wang, J. Pei, J. Bu, Z. Guan,
and W. V. Zhang. Can we learn a template-independent
wrapper for news article extraction from a single
training site? In SIGKDD 2009.

[4] G. Wu, L. Li, X. Hu, and X. Wu. Web news extraction
via path ratios. In CIKM 2013.

[5] Y. Xia, H. Yu, and S. Zhang. Automatic web data
extraction using tree alignment. In CIKM 2009.

[6] Y. Zhai and B. Liu. Web data extraction based on
partial tree alignment. In WWW 2005.

[7] S. Zheng, R. Song, J.-R. Wen, and C. L. Giles. Efficient
record-level wrapper induction. In CIKM 2009.

	INTRODUCTION
	RELATED WORK
	PROBLEM STATEMENT AND SYSTEM OVERVIEW
	Our Approach
	Integrating historical versions to an HMT
	Detecting dynamic content blocks
	Dynamic block monitoring and extraction

	Evaluation
	Experiment with page changes
	Experiment with extraction accuracy
	Strategies of rebuilding HMTs
	Comparing with RoadRunner

	CONCLUSIONS
	References

